
Algorithm Configuration:
A Hands-on Tutorial

Frank Hutter Marius Lindauer

University of Freiburg

AAAI 2016, Phoenix, USA

What is this tutorial about?

Algorithm configuration in a nutshell: optimization of free parameters
What kinds of parameters?
 any that you would otherwise tune yourself (&more)

Examples of free parameters in various subfields of AI

Tree search (in particular for SAT): pre-processing, branching
heuristics, clause learning & deletion, restarts, data structures, ...

Local search: neighbourhoods, perturbations, tabu length, annealing...

Genetic algorithms: population size, mating scheme, crossover
operators, mutation rate, local improvement stages, hybridizations, ...

Machine Learning: pre-processing, regularization (type & strength),
minibatch size, learning rate schedules, optimizer & its parameters, ...

Deep learning (in addition): #layers (& layer types), #units/layer,
dropout constants, weight initialization and decay, pre-training, ...

and many more ...

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 2

What is this tutorial about?

Algorithm configuration in a nutshell: optimization of free parameters
What kinds of parameters?
 any that you would otherwise tune yourself (&more)

Examples of free parameters in various subfields of AI

Tree search (in particular for SAT): pre-processing, branching
heuristics, clause learning & deletion, restarts, data structures, ...

Local search: neighbourhoods, perturbations, tabu length, annealing...

Genetic algorithms: population size, mating scheme, crossover
operators, mutation rate, local improvement stages, hybridizations, ...

Machine Learning: pre-processing, regularization (type & strength),
minibatch size, learning rate schedules, optimizer & its parameters, ...

Deep learning (in addition): #layers (& layer types), #units/layer,
dropout constants, weight initialization and decay, pre-training, ...

and many more ...

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 2

What is this tutorial about?

Algorithm configuration in a nutshell: optimization of free parameters
What kinds of parameters?
 any that you would otherwise tune yourself (&more)

Examples of free parameters in various subfields of AI

Tree search (in particular for SAT): pre-processing, branching
heuristics, clause learning & deletion, restarts, data structures, ...

Local search: neighbourhoods, perturbations, tabu length, annealing...

Genetic algorithms: population size, mating scheme, crossover
operators, mutation rate, local improvement stages, hybridizations, ...

Machine Learning: pre-processing, regularization (type & strength),
minibatch size, learning rate schedules, optimizer & its parameters, ...

Deep learning (in addition): #layers (& layer types), #units/layer,
dropout constants, weight initialization and decay, pre-training, ...

and many more ...

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 2

What is this tutorial about?

Algorithm configuration in a nutshell: optimization of free parameters
What kinds of parameters?
 any that you would otherwise tune yourself (&more)

Examples of free parameters in various subfields of AI

Tree search (in particular for SAT): pre-processing, branching
heuristics, clause learning & deletion, restarts, data structures, ...

Local search: neighbourhoods, perturbations, tabu length, annealing...

Genetic algorithms: population size, mating scheme, crossover
operators, mutation rate, local improvement stages, hybridizations, ...

Machine Learning: pre-processing, regularization (type & strength),
minibatch size, learning rate schedules, optimizer & its parameters, ...

Deep learning (in addition): #layers (& layer types), #units/layer,
dropout constants, weight initialization and decay, pre-training, ...

and many more ...

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 2

What is this tutorial about?

Algorithm configuration in a nutshell: optimization of free parameters
What kinds of parameters?
 any that you would otherwise tune yourself (&more)

Examples of free parameters in various subfields of AI

Tree search (in particular for SAT): pre-processing, branching
heuristics, clause learning & deletion, restarts, data structures, ...

Local search: neighbourhoods, perturbations, tabu length, annealing...

Genetic algorithms: population size, mating scheme, crossover
operators, mutation rate, local improvement stages, hybridizations, ...

Machine Learning: pre-processing, regularization (type & strength),
minibatch size, learning rate schedules, optimizer & its parameters, ...

Deep learning (in addition): #layers (& layer types), #units/layer,
dropout constants, weight initialization and decay, pre-training, ...

and many more ...

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 2

What is this tutorial about?

Algorithm configuration in a nutshell: optimization of free parameters
What kinds of parameters?
 any that you would otherwise tune yourself (&more)

Examples of free parameters in various subfields of AI

Tree search (in particular for SAT): pre-processing, branching
heuristics, clause learning & deletion, restarts, data structures, ...

Local search: neighbourhoods, perturbations, tabu length, annealing...

Genetic algorithms: population size, mating scheme, crossover
operators, mutation rate, local improvement stages, hybridizations, ...

Machine Learning: pre-processing, regularization (type & strength),
minibatch size, learning rate schedules, optimizer & its parameters, ...

Deep learning (in addition): #layers (& layer types), #units/layer,
dropout constants, weight initialization and decay, pre-training, ...

and many more ...

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 2

What is this tutorial about?

Algorithm configuration in a nutshell: optimization of free parameters
What kinds of parameters?
 any that you would otherwise tune yourself (&more)

Examples of free parameters in various subfields of AI

Tree search (in particular for SAT): pre-processing, branching
heuristics, clause learning & deletion, restarts, data structures, ...

Local search: neighbourhoods, perturbations, tabu length, annealing...

Genetic algorithms: population size, mating scheme, crossover
operators, mutation rate, local improvement stages, hybridizations, ...

Machine Learning: pre-processing, regularization (type & strength),
minibatch size, learning rate schedules, optimizer & its parameters, ...

Deep learning (in addition): #layers (& layer types), #units/layer,
dropout constants, weight initialization and decay, pre-training, ...

and many more ...

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 2

Hands-on!

Focus on basics

Less material, more in-depth

Target audience: focus on beginners

No special background assumed

Please ask questions

All literature references are hyperlinks

Goal: you can use algorithm configuration in your research

All demos use the virtual machine (VM) we distributed

If you downloaded the VM you can follow along live!

How many of you downloaded the VM?

- Don’t try now: it’s 3GB and you can follow what we do on the screen

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 3

Hands-on!

Focus on basics

Less material, more in-depth

Target audience: focus on beginners

No special background assumed

Please ask questions

All literature references are hyperlinks

Goal: you can use algorithm configuration in your research

All demos use the virtual machine (VM) we distributed

If you downloaded the VM you can follow along live!

How many of you downloaded the VM?

- Don’t try now: it’s 3GB and you can follow what we do on the screen

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 3

Hands-on!

Focus on basics

Less material, more in-depth

Target audience: focus on beginners

No special background assumed

Please ask questions

All literature references are hyperlinks

Goal: you can use algorithm configuration in your research

All demos use the virtual machine (VM) we distributed

If you downloaded the VM you can follow along live!

How many of you downloaded the VM?

- Don’t try now: it’s 3GB and you can follow what we do on the screen

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 3

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 4

Outline

1 The Algorithm Configuration Problem
Problem Statement
Motivation: a Few Success Stories
Overview of Methods

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 5

Outline

1 The Algorithm Configuration Problem
Problem Statement
Motivation: a Few Success Stories
Overview of Methods

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 6

Algorithm Parameters

Parameter Types

Continuous, integer, ordinal

Categorical: finite domain, unordered, e.g., {apple, tomato, pepper}

Parameter space has structure

E.g., parameter θ2 of heuristic H is only active if H is used (θ1 = H)

In this case, we say θ2 is a conditional parameter with parent θ1

Sometimes, some combinations of parameter settings are forbidden
e.g., the combination of θ3 = 1 and θ4 = 1 is forbidden

Parameters give rise to a structured space of configurations

Many configurations (e.g., SAT solver lingeling with 10947)

Configurations often yield qualitatively different behaviour

→ Algorithm Configuration (as opposed to “parameter tuning”)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 7

Algorithm Parameters

Parameter Types

Continuous, integer, ordinal

Categorical: finite domain, unordered, e.g., {apple, tomato, pepper}

Parameter space has structure

E.g., parameter θ2 of heuristic H is only active if H is used (θ1 = H)

In this case, we say θ2 is a conditional parameter with parent θ1

Sometimes, some combinations of parameter settings are forbidden
e.g., the combination of θ3 = 1 and θ4 = 1 is forbidden

Parameters give rise to a structured space of configurations

Many configurations (e.g., SAT solver lingeling with 10947)

Configurations often yield qualitatively different behaviour

→ Algorithm Configuration (as opposed to “parameter tuning”)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 7

Algorithm Parameters

Parameter Types

Continuous, integer, ordinal

Categorical: finite domain, unordered, e.g., {apple, tomato, pepper}

Parameter space has structure

E.g., parameter θ2 of heuristic H is only active if H is used (θ1 = H)

In this case, we say θ2 is a conditional parameter with parent θ1

Sometimes, some combinations of parameter settings are forbidden
e.g., the combination of θ3 = 1 and θ4 = 1 is forbidden

Parameters give rise to a structured space of configurations

Many configurations (e.g., SAT solver lingeling with 10947)

Configurations often yield qualitatively different behaviour

→ Algorithm Configuration (as opposed to “parameter tuning”)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 7

Algorithm Configuration Visualized

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 8

Algorithm Configuration – in More Detail

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I

Run A(θ) on π to
measure m(θ, π)

Returns Best
Configuration θ̂

Return Cost

Definition: algorithm configuration

Given:

a parameterized algorithm A with possible parameter settings Θ;

a distribution D over problem instances with domain I; and

a cost metric m : Θ× I → R,

Find: θ∗ ∈ arg minθ∈ΘEπ∼D(m(θ, π)).

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 9

Algorithm Configuration – in More Detail

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I

Run A(θ) on π to
measure m(θ, π)

Returns Best
Configuration θ̂

Return Cost

Definition: algorithm configuration

Given:

a parameterized algorithm A with possible parameter settings Θ;

a distribution D over problem instances with domain I; and

a cost metric m : Θ× I → R,

Find: θ∗ ∈ arg minθ∈ΘEπ∼D(m(θ, π)).

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 9

Algorithm Configuration – in More Detail

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I

Run A(θ) on π to
measure m(θ, π)

Returns Best
Configuration θ̂

Return Cost

Definition: algorithm configuration

Given:

a parameterized algorithm A with possible parameter settings Θ;

a distribution D over problem instances with domain I; and

a cost metric m : Θ× I → R,

Find: θ∗ ∈ arg minθ∈ΘEπ∼D(m(θ, π)).

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 9

Algorithm Configuration – Full Formal Definition

Definition: algorithm configuration

An instance of the algorithm configuration problem is a 5-tuple
(A,Θ,D, κ,m) where:

A is a parameterized algorithm;

Θ is the parameter configuration space of A;

D is a distribution over problem instances with domain I;

κ <∞ is a cutoff time, after which each run of A will be terminated
if still running

m : Θ× I → R is a function that measures the observed cost of
running A(θ) on an instance π ∈ I with cutoff time κ

The cost of a candidate solution θ ∈ Θ is c(θ) = Eπ∼D(m(θ, π)).
The goal is to find θ∗ ∈ arg minθ∈Θ c(θ).

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 10

Algorithm Configuration – Full Formal Definition

Definition: algorithm configuration

An instance of the algorithm configuration problem is a 5-tuple
(A,Θ,D, κ,m) where:

A is a parameterized algorithm;

Θ is the parameter configuration space of A;

D is a distribution over problem instances with domain I;

κ <∞ is a cutoff time, after which each run of A will be terminated
if still running

m : Θ× I → R is a function that measures the observed cost of
running A(θ) on an instance π ∈ I with cutoff time κ

The cost of a candidate solution θ ∈ Θ is c(θ) = Eπ∼D(m(θ, π)).
The goal is to find θ∗ ∈ arg minθ∈Θ c(θ).

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 10

Algorithm Configuration – Full Formal Definition

Definition: algorithm configuration

An instance of the algorithm configuration problem is a 5-tuple
(A,Θ,D, κ,m) where:

A is a parameterized algorithm;

Θ is the parameter configuration space of A;

D is a distribution over problem instances with domain I;

κ <∞ is a cutoff time, after which each run of A will be terminated
if still running

m : Θ× I → R is a function that measures the observed cost of
running A(θ) on an instance π ∈ I with cutoff time κ

The cost of a candidate solution θ ∈ Θ is c(θ) = Eπ∼D(m(θ, π)).
The goal is to find θ∗ ∈ arg minθ∈Θ c(θ).

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 10

Algorithm Configuration – Full Formal Definition

Definition: algorithm configuration

An instance of the algorithm configuration problem is a 5-tuple
(A,Θ,D, κ,m) where:

A is a parameterized algorithm;

Θ is the parameter configuration space of A;

D is a distribution over problem instances with domain I;

κ <∞ is a cutoff time, after which each run of A will be terminated
if still running

m : Θ× I → R is a function that measures the observed cost of
running A(θ) on an instance π ∈ I with cutoff time κ

The cost of a candidate solution θ ∈ Θ is c(θ) = Eπ∼D(m(θ, π)).
The goal is to find θ∗ ∈ arg minθ∈Θ c(θ).

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 10

Distribution vs. Set of Instances

Find: θ∗ ∈ arg minθ∈ΘEπ∼D(m(θ, π)).

Special case: distribution with finite support

We often only have N instances from a given application

In that case: split N instances into training and test set

Find θ∗ ∈ arg minθ∈Θ
1

Ntrain

∑Ntrain
i=1 (m(θ, πi)).

Evaluation on new test instances

Same approach as in machine learning

We configure algorithms on the training instances

We only use test instances to assess generalization performance

→ unbiased estimate of generalization performance for unseen instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 11

Distribution vs. Set of Instances

Find: θ∗ ∈ arg minθ∈ΘEπ∼D(m(θ, π)).

Special case: distribution with finite support

We often only have N instances from a given application

In that case: split N instances into training and test set

Find θ∗ ∈ arg minθ∈Θ
1

Ntrain

∑Ntrain
i=1 (m(θ, πi)).

Evaluation on new test instances

Same approach as in machine learning

We configure algorithms on the training instances

We only use test instances to assess generalization performance

→ unbiased estimate of generalization performance for unseen instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 11

Our Two Running Examples

Minimize the runtime of a SAT solver for a benchmark set

Optimize on training set:

θ∗ ∈ arg minθ∈Θ
1

Ntrain

∑Ntrain
i=1 (m(θ, πi))

Minimize K-fold cross-validation error of a machine learning algorithm

A cross-validation fold k plays the role of an instance
θ∗ ∈ arg minθ∈Θ

1
K

∑K
k=1(m(θ, k))

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 12

Our Two Running Examples

Minimize the runtime of a SAT solver for a benchmark set

Optimize on training set:

θ∗ ∈ arg minθ∈Θ
1

Ntrain

∑Ntrain
i=1 (m(θ, πi))

Minimize K-fold cross-validation error of a machine learning algorithm

A cross-validation fold k plays the role of an instance
θ∗ ∈ arg minθ∈Θ

1
K

∑K
k=1(m(θ, k))

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 12

Some use cases for Algorithm Configuration

Automatically customize versatile algorithms

New application domains

Optimize speed, accuracy, memory, energy consumption, latency, ...

All of these: possible without intimate knowledge of algorithm

Trade costly human time for cheap CPU time

Empirical studies, evaluations & comparisons of algorithms

Fairness: same tuning protocol for all algorithms

Reproducibility of protocol

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 13

Some use cases for Algorithm Configuration

Automatically customize versatile algorithms

New application domains

Optimize speed, accuracy, memory, energy consumption, latency, ...

All of these: possible without intimate knowledge of algorithm

Trade costly human time for cheap CPU time

Empirical studies, evaluations & comparisons of algorithms

Fairness: same tuning protocol for all algorithms

Reproducibility of protocol

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 13

Some use cases for Algorithm Configuration

Automatically customize versatile algorithms

New application domains

Optimize speed, accuracy, memory, energy consumption, latency, ...

All of these: possible without intimate knowledge of algorithm

Trade costly human time for cheap CPU time

Empirical studies, evaluations & comparisons of algorithms

Fairness: same tuning protocol for all algorithms

Reproducibility of protocol

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 13

AC in Context: Computer-Aided Algorithm Design

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 14

AC in Context: Computer-Aided Algorithm Design

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 14

Outline

1 The Algorithm Configuration Problem
Problem Statement
Motivation: a Few Success Stories
Overview of Methods

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 15

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

SAT (propositional satisfiability problem)

Prototypical NP-hard problem

Interesting theoretically and in practical applications

Formal verification

Software verification [Babić & Hu; CAV ’07]

Hardware verification (Bounded model checking) [Zarpas; SAT ’05]

Tree search solver for SAT-based verification

SPEAR, developed by Domagoj Babić at UBC

26 parameters, 8.34× 1017 configurations

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 16

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

SAT (propositional satisfiability problem)

Prototypical NP-hard problem

Interesting theoretically and in practical applications

Formal verification

Software verification [Babić & Hu; CAV ’07]

Hardware verification (Bounded model checking) [Zarpas; SAT ’05]

Tree search solver for SAT-based verification

SPEAR, developed by Domagoj Babić at UBC

26 parameters, 8.34× 1017 configurations

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 16

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

SAT (propositional satisfiability problem)

Prototypical NP-hard problem

Interesting theoretically and in practical applications

Formal verification

Software verification [Babić & Hu; CAV ’07]

Hardware verification (Bounded model checking) [Zarpas; SAT ’05]

Tree search solver for SAT-based verification

SPEAR, developed by Domagoj Babić at UBC

26 parameters, 8.34× 1017 configurations

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 16

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran FocusedILS, 2 days × 10 machines
– On a training set from each benchmark

Compared to manually-engineered default
– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

IB
M

−
B

M
C

 (
s)

4.5-fold speedup
on hardware verification

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

S
W

V
 (

s)

500-fold speedup won category
QF BV in 2007 SMT competition

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 17

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran FocusedILS, 2 days × 10 machines
– On a training set from each benchmark

Compared to manually-engineered default
– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

IB
M

−
B

M
C

 (
s)

4.5-fold speedup
on hardware verification

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

S
W

V
 (

s)

500-fold speedup won category
QF BV in 2007 SMT competition

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 17

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran FocusedILS, 2 days × 10 machines
– On a training set from each benchmark

Compared to manually-engineered default
– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

IB
M

−
B

M
C

 (
s)

4.5-fold speedup
on hardware verification

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

S
W

V
 (

s)

500-fold speedup won category
QF BV in 2007 SMT competition

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 17

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran FocusedILS, 2 days × 10 machines
– On a training set from each benchmark

Compared to manually-engineered default
– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

IB
M

−
B

M
C

 (
s)

4.5-fold speedup
on hardware verification

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

S
W

V
 (

s)

500-fold speedup won category
QF BV in 2007 SMT competition

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 17

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Algorithm Configuration is Widely Applicable

Hard combinatorial problems

- SAT, MIP, TSP, AI planning,
ASP, Time-tabling, ...

- UBC exam time-tabling since 2010

Game Theory: Kidney Exchange

Mobile Robotics

Monte Carlo Localization

Motion Capture

Machine Learning

- Automated Machine Learning
- Deep Learning

Also popular in industry

Better performance

increased productivity

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 18

Automated Machine Learning

Machine Learning is very successful in many applications.

But it still requires human machine learning experts to

- Preprocess the data
- Select / engineer features
- Select a model family
- Optimize hyperparameters
- Construct ensembles
- ...

AutoML: taking the human expert out of the loop

Deep learning helps to automatically learn features

But it is even more sensitive to hyperparameters

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 19

Automated Machine Learning

Machine Learning is very successful in many applications.

But it still requires human machine learning experts to

- Preprocess the data
- Select / engineer features
- Select a model family
- Optimize hyperparameters
- Construct ensembles
- ...

AutoML: taking the human expert out of the loop

Deep learning helps to automatically learn features

But it is even more sensitive to hyperparameters

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 19

Automated Machine Learning

Machine Learning is very successful in many applications.

But it still requires human machine learning experts to

- Preprocess the data
- Select / engineer features
- Select a model family
- Optimize hyperparameters
- Construct ensembles
- ...

AutoML: taking the human expert out of the loop

Deep learning helps to automatically learn features

But it is even more sensitive to hyperparameters

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 19

Automated Machine Learning

The AutoML approach introduced by Auto-WEKA [Thornton et al, 2013]

Expose the choices in a machine learning framework

- Algorithms, hyperparameters, preprocessors, ...

Optimize C/V performance using Bayesian optimization

 Obtain a true push-button solution for machine learning

Extended recently in Auto-sklearn [Feurer et al, 2015]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 20

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/papers/autoweka.pdf
https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf

Automated Machine Learning

The AutoML approach introduced by Auto-WEKA [Thornton et al, 2013]

Expose the choices in a machine learning framework

- Algorithms, hyperparameters, preprocessors, ...

Optimize C/V performance using Bayesian optimization

 Obtain a true push-button solution for machine learning

Extended recently in Auto-sklearn [Feurer et al, 2015]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 20

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/papers/autoweka.pdf
https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf

Auto-sklearn’s configuration space

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 21

Hands-on: Auto-sklearn

In your virtual machine:

Run a linear SVM and Auto-sklearn

$ cd AC-Tutorial/auto-sklearn/

$ vim baseline_svc.py

$ python baseline_svc.py

$ vim autosklearn-example.py

$ python autosklearn-example.py

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 22

Outline

1 The Algorithm Configuration Problem
Problem Statement
Motivation: a Few Success Stories
Overview of Methods

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 23

Challenges of Algorithm Configuration

Structured high-dimensional parameter space

Categorical vs. continuous parameters

Conditionals between parameters

Stochastic optimization

Randomized algorithms: optimization across various seeds

Distribution of benchmark instances (often wide range of hardness)

Subsumes so-called multi-armed bandit problem

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 24

Challenges of Algorithm Configuration

Structured high-dimensional parameter space

Categorical vs. continuous parameters

Conditionals between parameters

Stochastic optimization

Randomized algorithms: optimization across various seeds

Distribution of benchmark instances (often wide range of hardness)

Subsumes so-called multi-armed bandit problem

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 24

Component 1: Which Configuration to Choose?

For this component, we can consider a simpler problem:
Blackbox function optimization: minθ∈Θ f(θ)

Only mode of interaction: query f(θ) at arbitrary θ ∈ Θ

Abstracts away the complexity of evaluating multiple instances

Θ is still a structured space

Mixed continuous/discrete
Conditional parameters

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 25

Component 1: Which Configuration to Choose?

For this component, we can consider a simpler problem:
Blackbox function optimization: minθ∈Θ f(θ)

Only mode of interaction: query f(θ) at arbitrary θ ∈ Θ

Abstracts away the complexity of evaluating multiple instances

Θ is still a structured space

Mixed continuous/discrete
Conditional parameters

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 25

Component 1: Which Configuration to Evaluate?

Need to balance diversification and intensification

The extremes

- Random search
- Gradient Descent

Stochastic local search (SLS)

Population-based methods

Model-based Optimization

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 26

Component 2: How to Evaluate a Configuration?

Back to the general algorithm configuration problem

Distribution over problem instances with domain I;

Performance metric m : Θ× I → R

c(θ) = Eπ∼D(m(θ, π))

Simplest, suboptimal solution: use N runs for each evaluation

Treats the problem as a blackbox function optimization problem

Issue: how large to choose N?

- too small: overtuning
- too large: every function evaluation is slow

General principle to strive for

Don’t waste time on bad configurations

Evaluate good configurations more thoroughly

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 27

Component 2: How to Evaluate a Configuration?

Back to the general algorithm configuration problem

Distribution over problem instances with domain I;

Performance metric m : Θ× I → R

c(θ) = Eπ∼D(m(θ, π))

Simplest, suboptimal solution: use N runs for each evaluation

Treats the problem as a blackbox function optimization problem

Issue: how large to choose N?

- too small: overtuning
- too large: every function evaluation is slow

General principle to strive for

Don’t waste time on bad configurations

Evaluate good configurations more thoroughly

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 27

Component 2: How to Evaluate a Configuration?

Back to the general algorithm configuration problem

Distribution over problem instances with domain I;

Performance metric m : Θ× I → R

c(θ) = Eπ∼D(m(θ, π))

Simplest, suboptimal solution: use N runs for each evaluation

Treats the problem as a blackbox function optimization problem

Issue: how large to choose N?

- too small: overtuning
- too large: every function evaluation is slow

General principle to strive for

Don’t waste time on bad configurations

Evaluate good configurations more thoroughly

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 27

Racing algorithms: the general approach

Problem: which one of N candidate algorithms is best?

Start with empty set of runs for each algorithm

Iteratively:

Perform one run each
Discard inferior candidates
E.g., as judged by a statistical test (e.g., F-race uses an F-test)

Stop when a single candidate remains or configuration budget expires

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 28

Saving Time: Aggressive Racing

Race new configurations against the best known

- Discard poor new configurations quickly
- No requirement for statistical domination
- Evaluate best configurations with many runs

Search component should allow to return to configurations discarded
because they were “unlucky”

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 29

Saving Time: Aggressive Racing

Race new configurations against the best known

- Discard poor new configurations quickly
- No requirement for statistical domination
- Evaluate best configurations with many runs

Search component should allow to return to configurations discarded
because they were “unlucky”

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 29

Saving More Time: Adaptive Capping

When minimizing algorithm runtime,
we can terminate runs for poor configurations θ′ early:

Is θ′ better than θ?

- Example:

Can terminate evaluation of θ′ once guaranteed to be worse than θ

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 30

Saving More Time: Adaptive Capping

When minimizing algorithm runtime,
we can terminate runs for poor configurations θ′ early:

Is θ′ better than θ?

- Example:

Can terminate evaluation of θ′ once guaranteed to be worse than θ

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 30

General algorithm configuration systems

ParamILS [Hutter et al, 2007 & 2009]

Gender-based Genetic Algorithm (GGA) [Ansotegui et al, 2009]

Iterated F-Race [López-Ibáñez et al, 2011]

Sequential Model-based Algorithm Configuration (SMAC)
[Hutter et al, since 2011]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 31

http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
https://wiwi.uni-paderborn.de/fileadmin/dep3ls7/Downloads/Publikationen/PDFs/gga-cp2009.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2011-004.pdf
http://aad.informatik.uni-freiburg.de/papers/11-LION5-SMAC.pdf

The Baseline: Graduate Student Descent

Algorithm 1: Manual Greedy Algorithm Configuration

Start with some configuration θ

repeat
Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed first-improvement local search

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 32

The Baseline: Graduate Student Descent

Algorithm 1: Manual Greedy Algorithm Configuration

Start with some configuration θ

repeat

Modify a single parameter

if results on benchmark set improve then
keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed first-improvement local search

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 32

The Baseline: Graduate Student Descent

Algorithm 1: Manual Greedy Algorithm Configuration

Start with some configuration θ

repeat

Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed first-improvement local search

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 32

The Baseline: Graduate Student Descent

Algorithm 1: Manual Greedy Algorithm Configuration

Start with some configuration θ
repeat

Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed first-improvement local search

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 32

The Baseline: Graduate Student Descent

Algorithm 1: Manual Greedy Algorithm Configuration

Start with some configuration θ
repeat

Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed first-improvement local search

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 32

Going Beyond Local Optima: Iterated Local Search

(Initialisation)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

Going Beyond Local Optima: Iterated Local Search

(Initialisation)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

Going Beyond Local Optima: Iterated Local Search

(Perturbation)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

Going Beyond Local Optima: Iterated Local Search

?

Selection (using Acceptance Criterion)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

Going Beyond Local Optima: Iterated Local Search

(Perturbation)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

The ParamILS Framework [Hutter et al, 2007 & 2009]

ParamILS = Iterated Local Search in parameter configuration space

 Performs biased random walk over local optima

How to evaluate a configuration’s quality?

BasicILS(N): use N fixed instances

FocusedILS: increase # instances for good configurations over time

Theorem

Let Θ be finite. Then, the probability that FocusedILS finds the true
optimal parameter configuration θ∗ ∈ Θ approaches 1 as the number of
ILS iterations goes to infinity.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 34

http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf

The ParamILS Framework [Hutter et al, 2007 & 2009]

ParamILS = Iterated Local Search in parameter configuration space

 Performs biased random walk over local optima

How to evaluate a configuration’s quality?

BasicILS(N): use N fixed instances

FocusedILS: increase # instances for good configurations over time

Theorem

Let Θ be finite. Then, the probability that FocusedILS finds the true
optimal parameter configuration θ∗ ∈ Θ approaches 1 as the number of
ILS iterations goes to infinity.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 34

http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf

The ParamILS Framework [Hutter et al, 2007 & 2009]

ParamILS = Iterated Local Search in parameter configuration space

 Performs biased random walk over local optima

How to evaluate a configuration’s quality?

BasicILS(N): use N fixed instances

FocusedILS: increase # instances for good configurations over time

Theorem

Let Θ be finite. Then, the probability that FocusedILS finds the true
optimal parameter configuration θ∗ ∈ Θ approaches 1 as the number of
ILS iterations goes to infinity.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 34

http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf

The ParamILS Framework [Hutter et al, 2007 & 2009]

Advantages

Theoretically shown to converge

Often quickly finds local improvements over default
(can exploit a good default)

Very randomized → almost k-fold speedup for k parallel runs

Disadvantages

Very randomized → unreliable when only run once for a short time

Can be slow to find the global optimum

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 35

http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf

The ParamILS Framework [Hutter et al, 2007 & 2009]

Advantages

Theoretically shown to converge

Often quickly finds local improvements over default
(can exploit a good default)

Very randomized → almost k-fold speedup for k parallel runs

Disadvantages

Very randomized → unreliable when only run once for a short time

Can be slow to find the global optimum

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 35

http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf

GGA [Ansotegui et al, 2009]

Genetic algorithm for algorithm configuration

Genes = parameter values

Population: trades of exploration and exploitation

Use N instances to evaluate configurations in each generation

- Increase N in each generation: linearly from Nstart to Nend

Advantages

Easy to use parallel resources: evaluate several population members in
parallel

Disadvantages

User has to specify #generations ahead of time

Not recommended for small budgets

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 36

https://wiwi.uni-paderborn.de/fileadmin/dep3ls7/Downloads/Publikationen/PDFs/gga-cp2009.pdf

GGA [Ansotegui et al, 2009]

Genetic algorithm for algorithm configuration

Genes = parameter values

Population: trades of exploration and exploitation

Use N instances to evaluate configurations in each generation

- Increase N in each generation: linearly from Nstart to Nend

Advantages

Easy to use parallel resources: evaluate several population members in
parallel

Disadvantages

User has to specify #generations ahead of time

Not recommended for small budgets

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 36

https://wiwi.uni-paderborn.de/fileadmin/dep3ls7/Downloads/Publikationen/PDFs/gga-cp2009.pdf

GGA [Ansotegui et al, 2009]

Genetic algorithm for algorithm configuration

Genes = parameter values

Population: trades of exploration and exploitation

Use N instances to evaluate configurations in each generation

- Increase N in each generation: linearly from Nstart to Nend

Advantages

Easy to use parallel resources: evaluate several population members in
parallel

Disadvantages

User has to specify #generations ahead of time

Not recommended for small budgets

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 36

https://wiwi.uni-paderborn.de/fileadmin/dep3ls7/Downloads/Publikationen/PDFs/gga-cp2009.pdf

GGA [Ansotegui et al, 2009]

Genetic algorithm for algorithm configuration

Genes = parameter values

Population: trades of exploration and exploitation

Use N instances to evaluate configurations in each generation

- Increase N in each generation: linearly from Nstart to Nend

Advantages

Easy to use parallel resources: evaluate several population members in
parallel

Disadvantages

User has to specify #generations ahead of time

Not recommended for small budgets

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 36

https://wiwi.uni-paderborn.de/fileadmin/dep3ls7/Downloads/Publikationen/PDFs/gga-cp2009.pdf

Iterated F-race [López-Ibáñez et al, 2011]

Basic idea

Use F-Race as a building block

Iteratively sample configurations to race

Advantages

Can parallelize easily: runs of each racing iteration are independent

Well-supported software package (for the community that uses R)

Disadvantages

Does not support adaptive capping

The sampling of new configurations is not very strong for complex
search spaces

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 37

http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2011-004.pdf

Iterated F-race [López-Ibáñez et al, 2011]

Basic idea

Use F-Race as a building block

Iteratively sample configurations to race

Advantages

Can parallelize easily: runs of each racing iteration are independent

Well-supported software package (for the community that uses R)

Disadvantages

Does not support adaptive capping

The sampling of new configurations is not very strong for complex
search spaces

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 37

http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2011-004.pdf

Iterated F-race [López-Ibáñez et al, 2011]

Basic idea

Use F-Race as a building block

Iteratively sample configurations to race

Advantages

Can parallelize easily: runs of each racing iteration are independent

Well-supported software package (for the community that uses R)

Disadvantages

Does not support adaptive capping

The sampling of new configurations is not very strong for complex
search spaces

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 37

http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2011-004.pdf

SMAC in a Nutshell [Hutter et al, since 2011]

SMAC = Sequential Model-based Algorithm Configuration

Use a predictive model of algorithm performance to guide the search

Combine this search strategy with aggressive racing & adaptive
capping

One SMAC iteration

Construct a model to predict performance

Use that model to select promising configurations

Compare each of the selected configurations against the best known

- Using a similar procedure as FocusedILS

Theorem

Let Θ be finite. Then, the probability that FocusedILS finds the true
optimal parameter configuration θ∗ ∈ Θ approaches 1 as the number of
ILS iterations goes to infinity.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 38

http://aad.informatik.uni-freiburg.de/papers/11-LION5-SMAC.pdf

SMAC in a Nutshell [Hutter et al, since 2011]

SMAC = Sequential Model-based Algorithm Configuration

Use a predictive model of algorithm performance to guide the search

Combine this search strategy with aggressive racing & adaptive
capping

One SMAC iteration

Construct a model to predict performance

Use that model to select promising configurations

Compare each of the selected configurations against the best known

- Using a similar procedure as FocusedILS

Theorem

Let Θ be finite. Then, the probability that FocusedILS finds the true
optimal parameter configuration θ∗ ∈ Θ approaches 1 as the number of
ILS iterations goes to infinity.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 38

http://aad.informatik.uni-freiburg.de/papers/11-LION5-SMAC.pdf

SMAC in a Nutshell [Hutter et al, since 2011]

SMAC = Sequential Model-based Algorithm Configuration

Use a predictive model of algorithm performance to guide the search

Combine this search strategy with aggressive racing & adaptive
capping

One SMAC iteration

Construct a model to predict performance

Use that model to select promising configurations

Compare each of the selected configurations against the best known

- Using a similar procedure as FocusedILS

Theorem

Let Θ be finite. Then, the probability that FocusedILS finds the true
optimal parameter configuration θ∗ ∈ Θ approaches 1 as the number of
ILS iterations goes to infinity.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 38

http://aad.informatik.uni-freiburg.de/papers/11-LION5-SMAC.pdf

Bayesian Optimization

General approach

Fit a probabilistic model to the
collected function samples 〈θ, f(θ)〉
Use the model to guide optimization,
trading off exploration vs exploitation

Popular approach in the statistics
literature since [Mockus, 1978]

Efficient in # function evaluations

Works when objective is nonconvex,
noisy, has unknown derivatives, etc

Recent convergence results
[Srinivas et al, 2010; Bull 2011; de Freitas et

al, 2012; Kawaguchi et al, 2015]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 39

http://link.springer.com/chapter/10.1007%2F3-540-07165-2_55

Bayesian Optimization

General approach

Fit a probabilistic model to the
collected function samples 〈θ, f(θ)〉
Use the model to guide optimization,
trading off exploration vs exploitation

Popular approach in the statistics
literature since [Mockus, 1978]

Efficient in # function evaluations

Works when objective is nonconvex,
noisy, has unknown derivatives, etc

Recent convergence results
[Srinivas et al, 2010; Bull 2011; de Freitas et

al, 2012; Kawaguchi et al, 2015]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 39

http://link.springer.com/chapter/10.1007%2F3-540-07165-2_55

Bayesian Optimization

General approach

Fit a probabilistic model to the
collected function samples 〈θ, f(θ)〉
Use the model to guide optimization,
trading off exploration vs exploitation

Popular approach in the statistics
literature since [Mockus, 1978]

Efficient in # function evaluations

Works when objective is nonconvex,
noisy, has unknown derivatives, etc

Recent convergence results
[Srinivas et al, 2010; Bull 2011; de Freitas et

al, 2012; Kawaguchi et al, 2015]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 39

http://link.springer.com/chapter/10.1007%2F3-540-07165-2_55

Bayesian Optimization

General approach

Fit a probabilistic model to the
collected function samples 〈θ, f(θ)〉
Use the model to guide optimization,
trading off exploration vs exploitation

Popular approach in the statistics
literature since [Mockus, 1978]

Efficient in # function evaluations

Works when objective is nonconvex,
noisy, has unknown derivatives, etc

Recent convergence results
[Srinivas et al, 2010; Bull 2011; de Freitas et

al, 2012; Kawaguchi et al, 2015]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 39

http://link.springer.com/chapter/10.1007%2F3-540-07165-2_55

Bayesian Optimization

General approach

Fit a probabilistic model to the
collected function samples 〈θ, f(θ)〉
Use the model to guide optimization,
trading off exploration vs exploitation

Popular approach in the statistics
literature since [Mockus, 1978]

Efficient in # function evaluations

Works when objective is nonconvex,
noisy, has unknown derivatives, etc

Recent convergence results
[Srinivas et al, 2010; Bull 2011; de Freitas et

al, 2012; Kawaguchi et al, 2015]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 39

http://link.springer.com/chapter/10.1007%2F3-540-07165-2_55

Powering SMAC: Empirical Performance Models

Empirical Performance Models

Given:

Configuration space Θ = Θ1 × · · · ×Θn

For each problem instance πi: xi, a vector of feature values

Observed algorithm runtime data: 〈(θi,xi, yi)〉Ni=1

Find: a mapping m̂ : [θ,x] 7→ y predicting performance

Which type of regression model?

Rich literature on performance prediction
(overview: [Hutter et al, AIJ 2014])

Here: we use a model m̂ based on random forests

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 40

http://arxiv.org/abs/1211.0906

Powering SMAC: Empirical Performance Models

Empirical Performance Models

Given:

Configuration space Θ = Θ1 × · · · ×Θn

For each problem instance πi: xi, a vector of feature values

Observed algorithm runtime data: 〈(θi,xi, yi)〉Ni=1

Find: a mapping m̂ : [θ,x] 7→ y predicting performance

Which type of regression model?

Rich literature on performance prediction
(overview: [Hutter et al, AIJ 2014])

Here: we use a model m̂ based on random forests

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 40

http://arxiv.org/abs/1211.0906

Fitting a Regression Tree

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 41

Fitting a Regression Tree

In each internal node: only store split criterion used

In each leaf: store mean of responses

Prediction for a new data point: walk down the tree, return stored value

E.g. for (param1, feature2, param3) = (true, 4.7, red): 1.65

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 42

Fitting a Regression Tree

In each internal node: only store split criterion used

In each leaf: store mean of responses

Prediction for a new data point: walk down the tree, return stored value

E.g. for (param1, feature2, param3) = (true, 4.7, red): 1.65

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 42

Random Forests: Sets of Regression Trees

Training

Draw T bootstrap samples of the data

For each bootstrap sample, fit a randomized regression tree

Prediction

Predict with each of the T trees

Return empirical mean and variance across these T predictions

Complexity for N data points

Training: O(TNlog2N)

Prediction: O(T logN)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 43

Random Forests: Sets of Regression Trees

Training

Draw T bootstrap samples of the data

For each bootstrap sample, fit a randomized regression tree

Prediction

Predict with each of the T trees

Return empirical mean and variance across these T predictions

Complexity for N data points

Training: O(TNlog2N)

Prediction: O(T logN)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 43

Random Forests: Sets of Regression Trees

Training

Draw T bootstrap samples of the data

For each bootstrap sample, fit a randomized regression tree

Prediction

Predict with each of the T trees

Return empirical mean and variance across these T predictions

Complexity for N data points

Training: O(TNlog2N)

Prediction: O(T logN)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 43

SMAC: Averaging Across Multiple Instances

Fit a Model to the Algorithm Performance Data

Observed algorithm runtime data: 〈(θi,xi, yi)〉Ni=1

Random forest model m̂ : Θ× I → R

Aggregate over instances by marginalization

f̂(θ) = Eπ∼D(m̂(θ, π))

Intuition: predict for each instance and then average

More efficient implementation in random forests

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 44

SMAC: Averaging Across Multiple Instances

Fit a Model to the Algorithm Performance Data

Observed algorithm runtime data: 〈(θi,xi, yi)〉Ni=1

Random forest model m̂ : Θ× I → R

Aggregate over instances by marginalization

f̂(θ) = Eπ∼D(m̂(θ, π))

Intuition: predict for each instance and then average

More efficient implementation in random forests

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 44

SMAC: Putting it all Together

Algorithm 2: SMAC

Initialize with a single run for the default

repeat
Learn a RF model from data so far: m̂ : Θ× I → R

Aggregate over instances: f̂(θ) = Eπ∼D(m̂(θ, π))

Use model f̂ to select promising configurations
Race selected configurations against best known

until time budget exhausted

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 45

SMAC: Putting it all Together

Algorithm 2: SMAC

Initialize with a single run for the default

repeat

Learn a RF model from data so far: m̂ : Θ× I → R

Aggregate over instances: f̂(θ) = Eπ∼D(m̂(θ, π))

Use model f̂ to select promising configurations
Race selected configurations against best known

until time budget exhausted

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 45

SMAC: Putting it all Together

Algorithm 2: SMAC

Initialize with a single run for the default

repeat

Learn a RF model from data so far: m̂ : Θ× I → R

Aggregate over instances: f̂(θ) = Eπ∼D(m̂(θ, π))

Use model f̂ to select promising configurations
Race selected configurations against best known

until time budget exhausted

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 45

SMAC: Putting it all Together

Algorithm 2: SMAC

Initialize with a single run for the default

repeat

Learn a RF model from data so far: m̂ : Θ× I → R

Aggregate over instances: f̂(θ) = Eπ∼D(m̂(θ, π))

Use model f̂ to select promising configurations

Race selected configurations against best known
until time budget exhausted

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 45

SMAC: Putting it all Together

Algorithm 2: SMAC

Initialize with a single run for the default

repeat

Learn a RF model from data so far: m̂ : Θ× I → R

Aggregate over instances: f̂(θ) = Eπ∼D(m̂(θ, π))

Use model f̂ to select promising configurations

Race selected configurations against best known
until time budget exhausted

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 45

SMAC: Putting it all Together

Algorithm 2: SMAC

Initialize with a single run for the default

repeat

Learn a RF model from data so far: m̂ : Θ× I → R

Aggregate over instances: f̂(θ) = Eπ∼D(m̂(θ, π))

Use model f̂ to select promising configurations
Race selected configurations against best known

until time budget exhausted

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 45

SMAC: Putting it all Together

Algorithm 2: SMAC

Initialize with a single run for the default
repeat

Learn a RF model from data so far: m̂ : Θ× I → R

Aggregate over instances: f̂(θ) = Eπ∼D(m̂(θ, π))

Use model f̂ to select promising configurations
Race selected configurations against best known

until time budget exhausted

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 45

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems
SpySMAC: A SAT Python Tool for AC
pySMAC: A Python Interface to AC
SMAC: Full Flexibility for AC

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 46

SMAC, pySMAC, SpySMAC

pySMAC

SpySMAC

SMAC
Algorithm

Configuration
Scenario

SMAC Configurator implemented in JAVA

pySMAC Python Interface to SMAC

SpySMAC SAT-pySMAC: an easy-to-use AC framework for SAT-solvers

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 47

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems
SpySMAC: A SAT Python Tool for AC
pySMAC: A Python Interface to AC
SMAC: Full Flexibility for AC

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 48

SpySMAC [Falkner et al, 2015]

User input SpySMAC run.py SpySMAC analyze.py

Instances

Training

Test

Solver

PCS file

additional
options

default

SMAC 1

...

SMACn

default
performance

configured
performance

combined
run data

fANOVA
parameter
importance

performance
evaluation

scatter plot

CDF plot

cactus plots

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 49

http://aad.informatik.uni-freiburg.de/papers/15-SAT-SpySMAC.pdf

Example: MiniSAT [Een et al, ’03-’07]

MiniSAT (http://minisat.se/) is a SAT solver that is

minimalistic,

open-source,

and developed to help researchers and developers alike to get started
on SAT

MiniSAT has 8 (performance-relevant) parameters

Pitfall: Random seed (rnd-seed) should not be tuned!

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 50

http://minisat.se/downloads/MiniSat_v1.13_short.pdf
http://minisat.se/

Example: MiniSAT [Een et al, ’03-’07]

MiniSAT (http://minisat.se/) is a SAT solver that is

minimalistic,

open-source,

and developed to help researchers and developers alike to get started
on SAT

MiniSAT has 8 (performance-relevant) parameters

Pitfall: Random seed (rnd-seed) should not be tuned!

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 50

http://minisat.se/downloads/MiniSat_v1.13_short.pdf
http://minisat.se/

Example: MiniSAT [Een et al, ’03-’07]

MiniSAT (http://minisat.se/) is a SAT solver that is

minimalistic,

open-source,

and developed to help researchers and developers alike to get started
on SAT

MiniSAT has 8 (performance-relevant) parameters

Pitfall: Random seed (rnd-seed) should not be tuned!

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 50

http://minisat.se/downloads/MiniSat_v1.13_short.pdf
http://minisat.se/

Toy AC Scenario

Solver: MiniSAT

PCS: 8 parameters

Instances: software verification of gzip

Budget: 60 seconds

Cutoff: 2 seconds

Object: runtime

Statistic: PAR10 (penalized average runtime, counting timeouts at
tmax as 10 · tmax)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 51

Hands-on: SpySMAC

In your virtual machine:

Determine optimized configuration

$ cd AC-Tutorial/SpySMAC/

$ python ./SpySMAC/SpySMAC_run.py

-i ./SpySMAC/examples/swv-inst/SWV-GZIP/

-b ./SpySMAC/examples/minisat/core/minisat

-p ./SpySMAC/examples/minisat/pcs.txt

-o minisat-logs

--prefix "-"

-c 2 -B 60

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 52

Hands-on: SpySMAC

In your virtual machine:

Validate default configuration

$ python ./SpySMAC/SpySMAC_run.py

-i ./SpySMAC/examples/swv-inst/SWV-GZIP/

-b ./SpySMAC/examples/minisat/core/minisat

-p ./SpySMAC/examples/minisat/pcs.txt

-o minisat-logs

--prefix "-"

-c 2 -B 60

--seed 0 # <-- validate default!

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 53

Inputs of SpySMAC

Parameter Configuration Space

Algorithm

Instances

Options:

Target algorithm runtime cutoff
Configuration budget

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 54

Specifying Parameter Configuration Spaces (PCS)

There are many different types of parameter

As for other combinatorial problems, there is a standard
representation that different configuration procedures can read

The simple standard format: PCS

PCS (short for ”parameter configuration space”)

human readable/writable

allows to express a wide range of parameter types

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 55

Specifying Parameter Configuration Spaces (PCS)

There are many different types of parameter

As for other combinatorial problems, there is a standard
representation that different configuration procedures can read

The simple standard format: PCS

PCS (short for ”parameter configuration space”)

human readable/writable

allows to express a wide range of parameter types

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 55

Configuration Space – Parameter Types

Continuous

Parameter can take every value in a given range:
param name [lower bound, upper bound][default]

e.g., rnd-freq [0,1][0]

Integer

Parameter can take every integer value in a given range:
param name [lower bound, upper bound][default]i

e.g., rfirst [1,10000000][1]i

Categorical

Parameter can take every value from an unordered finite set
param name {value1, ..., valueN}[default]
e.g., ccmin-mode {0,1,2}[0]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 56

Configuration Space – Parameter Types

Continuous

Parameter can take every value in a given range:
param name [lower bound, upper bound][default]

e.g., rnd-freq [0,1][0]

Integer

Parameter can take every integer value in a given range:
param name [lower bound, upper bound][default]i

e.g., rfirst [1,10000000][1]i

Categorical

Parameter can take every value from an unordered finite set
param name {value1, ..., valueN}[default]
e.g., ccmin-mode {0,1,2}[0]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 56

Configuration Space – Parameter Types

Continuous

Parameter can take every value in a given range:
param name [lower bound, upper bound][default]

e.g., rnd-freq [0,1][0]

Integer

Parameter can take every integer value in a given range:
param name [lower bound, upper bound][default]i

e.g., rfirst [1,10000000][1]i

Categorical

Parameter can take every value from an unordered finite set
param name {value1, ..., valueN}[default]
e.g., ccmin-mode {0,1,2}[0]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 56

Range Transformation

Log-Transformation

The ranges of continuous and integer parameter can be
log-transformed

→ SMAC samples new configurations uniformly from the
log-transformed range

E.g., the difference between 0.9 and 0.8 is maybe not so important as
between 0.1 and 0.2

param name [lower bound, upper bound][default]l

e.g., rinc [1.00001,1024][1.00001]l

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 57

Structured Configuration Space

Conditionals

Parameter θ2 of heuristic H is only active if H is used (θ1 = H)

In this case, we say θ2 is a conditional parameter with parent θ1

θ1 currently has to be a categorical parameter

param2 | param1 in {H}

Forbidden Combinations

Sometimes, combinations of parameter settings are forbidden
e.g., the combination of θ3 = 1 and θ4 = 2 is forbidden

{param3=1, param4=2}

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 58

Structured Configuration Space

Conditionals

Parameter θ2 of heuristic H is only active if H is used (θ1 = H)

In this case, we say θ2 is a conditional parameter with parent θ1

θ1 currently has to be a categorical parameter

param2 | param1 in {H}

Forbidden Combinations

Sometimes, combinations of parameter settings are forbidden
e.g., the combination of θ3 = 1 and θ4 = 2 is forbidden

{param3=1, param4=2}

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 58

PCS Example: MiniSAT

∼/AC-Tutorial/SpySMAC/SpySMAC/examples/minisat/pcs.txt
rnd-freq [0,1][1]

var-decay [0.001,1][0.001]l

cla-decay [0.001,1][0.001]l

rinc [1.00001,1024][1.00001]l

gc-frac [0,1][0.00001]

rfirst [1,10000000][1]il

ccmin-mode {0,1,2}[0]

phase-saving {0,1,2}[0]

→ For illustration, we use a bad default configuration.
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 59

Decision: Instance set

Representative instances

Representative of the instances you want to solve later

Moderately hard instances

Too hard: will not solve many instances, no traction

Too easy: will results generalize to harder instances?

Rule of thumb: mix of hardness ranges

Roughly 75% instances solvable by default in maximal cutoff time

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 60

Decision: Instance set

Representative instances

Representative of the instances you want to solve later

Moderately hard instances

Too hard: will not solve many instances, no traction

Too easy: will results generalize to harder instances?

Rule of thumb: mix of hardness ranges

Roughly 75% instances solvable by default in maximal cutoff time

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 60

Decision: Instance set

Homogeneity of instances

Easier to optimize on homogeneous instances

There is one configuration that performs well on all instances
Indicator: Same characteristics, e.g., all instances encode the same
problem

Harder on heterogeneous instances

A portfolio approach will perform better an these instances
Indicator: Different characteristics, e.g., instances encode different
problems

Enough instances

The more training instances the better

Very homogeneous instance sets: 50 instances might suffice

Preferably ≥ 300 instances, better even ≥ 1000 instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 61

Decision: Instance set

Homogeneity of instances

Easier to optimize on homogeneous instances

There is one configuration that performs well on all instances
Indicator: Same characteristics, e.g., all instances encode the same
problem

Harder on heterogeneous instances

A portfolio approach will perform better an these instances
Indicator: Different characteristics, e.g., instances encode different
problems

Enough instances

The more training instances the better

Very homogeneous instance sets: 50 instances might suffice

Preferably ≥ 300 instances, better even ≥ 1000 instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 61

Decision: Instance set

Homogeneity of instances

Easier to optimize on homogeneous instances

There is one configuration that performs well on all instances
Indicator: Same characteristics, e.g., all instances encode the same
problem

Harder on heterogeneous instances

A portfolio approach will perform better an these instances
Indicator: Different characteristics, e.g., instances encode different
problems

Enough instances

The more training instances the better

Very homogeneous instance sets: 50 instances might suffice

Preferably ≥ 300 instances, better even ≥ 1000 instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 61

Decision: Configuration Budget and Cutoff

Configuration Budget

Dictated by your resources and needs

E.g., start configuration before leaving work on Friday

The longer the better (but diminishing returns)

Rough rule of thumb: typically at least enough time for 1000 target
runs (i.e., 1000 times the cutoff)
But have also achieved good results with 50 target runs in some cases

Maximal cutoff time per target run

Dictated by your needs (typical instance hardness, etc.)

Too high: slow progress

Too low: possible overtuning to easy instances

For SAT etc, often use 300 CPU seconds

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 62

Decision: Configuration Budget and Cutoff

Configuration Budget

Dictated by your resources and needs

E.g., start configuration before leaving work on Friday

The longer the better (but diminishing returns)

Rough rule of thumb: typically at least enough time for 1000 target
runs (i.e., 1000 times the cutoff)
But have also achieved good results with 50 target runs in some cases

Maximal cutoff time per target run

Dictated by your needs (typical instance hardness, etc.)

Too high: slow progress

Too low: possible overtuning to easy instances

For SAT etc, often use 300 CPU seconds

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 62

Toy AC Scenario (repeated)

Solver: MiniSAT

PCS: 8 parameters

Instances: software verification of gzip

Budget: 60 seconds

Cutoff: 2 seconds

Object: runtime

Statistic: PAR10 (penalized average runtime, counting timeouts at
tmax as 10 · tmax)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 63

Hands-on: SpySMAC

In your virtual machine:

Analyze and show report

$ python ./SpySMAC/SpySMAC_analyze.py

-i minisat-logs/

-o minisat-report

[...]

$ firefox minisat-report/index.html &

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 64

Running examples of algorithms to compare

Taken from the Configurable SAT Solver Challenge [Hutter et al, 2015]

(http://aclib.net/cssc2014/)

Example 1:
Algorithm: Lingeling [Biere, 2013]

- 2 versions: default vs. configured on training instances

Benchmark set: Circuit-Fuzz [Brummayer et al, 2013]

Example 2:
Algorithm: Clasp [Gebser et al, 2012]

- 2 versions: default vs. configured on training instances

Benchmark set: N-Rooks [Manthey & Steinke, 2014]

Comparing runtimes on test instances not used for configuration

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 65

http://arxiv.org/abs/1505.01221
http://aclib.net/cssc2014/
http://fmv.jku.at/papers/Biere-SAT-Competition-2013-Lingeling.pdf
http://fmv.jku.at/papers/ArthoBiereSeidl-TAP13.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/gekasc12b.pdf
https://helda.helsinki.fi/bitstream/handle/10138/136242/sc2014_proceedings.pdf?sequence=1#page=97

Running examples of algorithms to compare

Taken from the Configurable SAT Solver Challenge [Hutter et al, 2015]

(http://aclib.net/cssc2014/)

Example 1:
Algorithm: Lingeling [Biere, 2013]

- 2 versions: default vs. configured on training instances

Benchmark set: Circuit-Fuzz [Brummayer et al, 2013]

Example 2:
Algorithm: Clasp [Gebser et al, 2012]

- 2 versions: default vs. configured on training instances

Benchmark set: N-Rooks [Manthey & Steinke, 2014]

Comparing runtimes on test instances not used for configuration

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 65

http://arxiv.org/abs/1505.01221
http://aclib.net/cssc2014/
http://fmv.jku.at/papers/Biere-SAT-Competition-2013-Lingeling.pdf
http://fmv.jku.at/papers/ArthoBiereSeidl-TAP13.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/gekasc12b.pdf
https://helda.helsinki.fi/bitstream/handle/10138/136242/sc2014_proceedings.pdf?sequence=1#page=97

Running examples of algorithms to compare

Taken from the Configurable SAT Solver Challenge [Hutter et al, 2015]

(http://aclib.net/cssc2014/)

Example 1:
Algorithm: Lingeling [Biere, 2013]

- 2 versions: default vs. configured on training instances

Benchmark set: Circuit-Fuzz [Brummayer et al, 2013]

Example 2:
Algorithm: Clasp [Gebser et al, 2012]

- 2 versions: default vs. configured on training instances

Benchmark set: N-Rooks [Manthey & Steinke, 2014]

Comparing runtimes on test instances not used for configuration

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 65

http://arxiv.org/abs/1505.01221
http://aclib.net/cssc2014/
http://fmv.jku.at/papers/Biere-SAT-Competition-2013-Lingeling.pdf
http://fmv.jku.at/papers/ArthoBiereSeidl-TAP13.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/gekasc12b.pdf
https://helda.helsinki.fi/bitstream/handle/10138/136242/sc2014_proceedings.pdf?sequence=1#page=97

Running examples of algorithms to compare

Taken from the Configurable SAT Solver Challenge [Hutter et al, 2015]

(http://aclib.net/cssc2014/)

Example 1:
Algorithm: Lingeling [Biere, 2013]

- 2 versions: default vs. configured on training instances

Benchmark set: Circuit-Fuzz [Brummayer et al, 2013]

Example 2:
Algorithm: Clasp [Gebser et al, 2012]

- 2 versions: default vs. configured on training instances

Benchmark set: N-Rooks [Manthey & Steinke, 2014]

Comparing runtimes on test instances not used for configuration

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 65

http://arxiv.org/abs/1505.01221
http://aclib.net/cssc2014/
http://fmv.jku.at/papers/Biere-SAT-Competition-2013-Lingeling.pdf
http://fmv.jku.at/papers/ArthoBiereSeidl-TAP13.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/gekasc12b.pdf
https://helda.helsinki.fi/bitstream/handle/10138/136242/sc2014_proceedings.pdf?sequence=1#page=97

Running examples of algorithms to compare

Taken from the Configurable SAT Solver Challenge [Hutter et al, 2015]

(http://aclib.net/cssc2014/)

Example 1:
Algorithm: Lingeling [Biere, 2013]

- 2 versions: default vs. configured on training instances

Benchmark set: Circuit-Fuzz [Brummayer et al, 2013]

Example 2:
Algorithm: Clasp [Gebser et al, 2012]

- 2 versions: default vs. configured on training instances

Benchmark set: N-Rooks [Manthey & Steinke, 2014]

Comparing runtimes on test instances not used for configuration

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 65

http://arxiv.org/abs/1505.01221
http://aclib.net/cssc2014/
http://fmv.jku.at/papers/Biere-SAT-Competition-2013-Lingeling.pdf
http://fmv.jku.at/papers/ArthoBiereSeidl-TAP13.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/gekasc12b.pdf
https://helda.helsinki.fi/bitstream/handle/10138/136242/sc2014_proceedings.pdf?sequence=1#page=97

Comparing algorithms based on summary statistics

Clasp on N-Rooks, tmax = 300s
Default Configured

Average runtime [s] 81.8 4.68
PAR10 [s] 704 4.68
Timeouts (out of 351) 81 0

PAR10: penalized average runtime, counting timeouts at tmax as 10 · tmax

Lingeling on Circuit-Fuzz, tmax = 300s
Default Configured

Average runtime [s] 47.8 32.0
PAR10 [s] 186 115
Timeouts (out of 585) 30 18

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 66

Comparing algorithms based on summary statistics

Clasp on N-Rooks, tmax = 300s
Default Configured

Average runtime [s] 81.8 4.68
PAR10 [s] 704 4.68
Timeouts (out of 351) 81 0

PAR10: penalized average runtime, counting timeouts at tmax as 10 · tmax

Lingeling on Circuit-Fuzz, tmax = 300s
Default Configured

Average runtime [s] 47.8 32.0
PAR10 [s] 186 115
Timeouts (out of 585) 30 18

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 66

Comparing algorithms based on their runtime distributions

Distributions of runtime across benchmark instances
(Clasp on N-Rooks)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 67

Comparing algorithms based on their runtime distributions

(Lingeling on Circuit-Fuzz)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 68

Comparing algorithms based on scatter plots

Each marker represents one instance; note the log-log axis!

(Clasp on N-Rooks; 81 vs. 0 timeouts)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 69

Comparing algorithms based on scatter plots

(Lingeling on Circuit-Fuzz; 30 vs. 18 timeouts)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 70

Comparing algorithms based on scatter plots

Scatter plots can reveal clear patterns in the data

Example: an algorithm that

first runs SLS algorithm A
(good for satisfiable instances)
for t seconds

then runs complete tree search
algorithm B (good for
unsatisfiable instances) until
time is up

There are 2 instance clusters:
satisfiable (left) and unsatisfiable instances (right)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 71

Comparing algorithms based on scatter plots

Scatter plots can reveal clear patterns in the data

Example: an algorithm that

first runs SLS algorithm A
(good for satisfiable instances)
for t seconds

then runs complete tree search
algorithm B (good for
unsatisfiable instances) until
time is up

There are 2 instance clusters:
satisfiable (left) and unsatisfiable instances (right)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 71

Why not always using SpySMAC?

Advantages:

Easy to set up – easier than plain SMAC

Includes an analyzing part – not part of SMAC

However, SpySMAC has some limitations right now:

Only runtime optimization

Parses only standard output of SAT solvers

However, with a little Python experience, you could solve all these
limitations.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 72

Why not always using SpySMAC?

Advantages:

Easy to set up – easier than plain SMAC

Includes an analyzing part – not part of SMAC

However, SpySMAC has some limitations right now:

Only runtime optimization

Parses only standard output of SAT solvers

However, with a little Python experience, you could solve all these
limitations.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 72

Why not always using SpySMAC?

Advantages:

Easy to set up – easier than plain SMAC

Includes an analyzing part – not part of SMAC

However, SpySMAC has some limitations right now:

Only runtime optimization

Parses only standard output of SAT solvers

However, with a little Python experience, you could solve all these
limitations.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 72

BREAK - 30 Minutes!

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 73

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems
SpySMAC: A SAT Python Tool for AC
pySMAC: A Python Interface to AC
SMAC: Full Flexibility for AC

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 74

pySMAC

pySMAC

Python
Function

SMACIPC

θ

function value

“Algorithm”; black box (Python) function

Hides most of SMAC ’s complexity (e.g., instances)

Still as powerful as SMAC

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 75

Toy Example: Rosenbrock Function

source: wikipedia.org

f(x, y) = (a− x)2 + b(y − x2)2

Well-known non-convex function
Optimum at (x, y) = (a, a2)
Multidimensional generalization possible (here: 4D)
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 76

Optimize on Rosenbrock

Optimize Strategies:

1 SMAC (as shown before)

2 Random search

In your virtual machine

pySMAC Call

$ cd ~/AC-Tutorial/pysmac

$ python example.py

In the meantime, let us look into example.py

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 77

Optimize on Rosenbrock

Optimize Strategies:

1 SMAC (as shown before)

2 Random search

In your virtual machine

pySMAC Call

$ cd ~/AC-Tutorial/pysmac

$ python example.py

In the meantime, let us look into example.py

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 77

Optimize on Rosenbrock

Optimize Strategies:

1 SMAC (as shown before)

2 Random search

In your virtual machine

pySMAC Call

$ cd ~/AC-Tutorial/pysmac

$ python example.py

In the meantime, let us look into example.py

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 77

Advanced pySMAC

Restricting your functions resources

Optimizing runtime instead of quality

Optimizing on a set of instances

Validation

Non-deterministic functions

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 78

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems
SpySMAC: A SAT Python Tool for AC
pySMAC: A Python Interface to AC
SMAC: Full Flexibility for AC

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 79

SMAC

SMAC

Core of our algorithm configuration tools

Implementation of the optimization algorithm

Further Inputs (wrt SpySMAC)

Scenario File

Call to algorithm through a wrapper

Wrapper has to honour a specified syntax

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 80

Scenario File Example

algo-exec python -u minisat/SATWrapper.py --mem-limit 1024\

--script minisat/MiniSATWrapper.py

pcs-file minisat/pcs.txt

instances minisat/instances_train.txt

test-instances minisat/instances_test.txt

cutoff_time 2

wallclock-limit 120

algo-deterministic False

run-obj runtime

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 81

How to Wrap a Target Algorithm

Call Format
<algo executable> <instance name>

<instance specific information> <cutoff time>

<cutoff length> <seed> <param> <value> <param> <value>...

Output Format

Result of this algorithm run: <status>,

<runtime>, <runlength>, <quality>, <seed>

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 82

How to Wrap a Target Algorithm

Call Format
<algo executable> <instance name>

<instance specific information> <cutoff time>

<cutoff length> <seed> <param> <value> <param> <value>...

Output Format

Result of this algorithm run: <status>,

<runtime>, <runlength>, <quality>, <seed>

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 82

How To Wrap the Target Algorithm: GenericWrapper

We provide a Python script with basic functionality as a wrapper,
called GenericWrapper:

Limitation of runtime and memory with runsolver

Interface to configurator

Parsing of input parameters
Output string in the required format

You only have to implement two functions:

How to call your algorithm with the given parameter configuration?

How to parse the output of your algorithm?

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 83

How To Wrap the Target Algorithm: GenericWrapper

We provide a Python script with basic functionality as a wrapper,
called GenericWrapper:

Limitation of runtime and memory with runsolver

Interface to configurator

Parsing of input parameters
Output string in the required format

You only have to implement two functions:

How to call your algorithm with the given parameter configuration?

How to parse the output of your algorithm?

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 83

GenericWrapper: CMD Call for MiniSAT

see minisat/MiniSATWrapper.py

def get_command_line_cmd(runargs, config):

cmd = "minisat/minisat -rnd-seed=%d" %(runargs["seed"])

for name, value in config.items():

cmd += " %s=%s" %(name, value)

cmd += " %s" %(runargs["instance"])

return cmd

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 84

GenericWrapper: Output Parsing for MiniSAT

see minisat/SATWrapper.py (Bug in this script in the VM)

def process_results(self, filepointer, exit_code):

data = filepointer.read()

resultMap = {}

if re.search(’UNSATISFIABLE’, data):

resultMap[’status’] = ’UNSAT’

elif re.search(’SATISFIABLE’, data):

resultMap[’status’] = ’SAT’

elif re.search(’UNKNOWN’, data):

resultMap[’status’] = ’TIMEOUT’

else:

resultMap[’status’] = ’CRASHED’

return resultMap

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 85

Hands-On: SMAC

$ cd ~/AC-Tutorial/minisat-smac/

$../smac-v2.10.03-master-778/smac

--scenarioFile scenario.txt

[...]

$../smac-v2.10.03-master-778/smac-validate

--scenarioFile scenario.txt

--random-configurations 1 --includeDefaultAsFirstRandom true

--numRun 1

[...]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 86

Hands-On: SMAC ’s Output

SMAC has finished. [...]

Total number of runs performed: 222,

total configurations tried: 23.

Total CPU time used: 79 s, total wallclock time used: 121 s.

SMAC’s final incumbent: config 16 (internal ID: 0x34CE3),

with estimated penalized average runtime (PAR10): 0.868,

based on 24 run(s) on 24 training instance(s).

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 87

Hands-On: Validation Output

Estimated mean quality

of final incumbent config 16

on test set: 0.0168,

based on 45 run(s) on 45 test instance(s).

Sample call for the final incumbent:

cd /home/ac/AC-Tutorial/minisat-smac;

python -u minisat/SATWrapper.py --mem-limit 1024

--script minisat/MiniSATWrapper.py

swv-inst/SWV-GZIP/gzip_vc1073.cnf 0 2.0

2147483647 12660129

-ccmin-mode ’2’ -cla-decay ’0.014589435384907675’ [...]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 88

Hands-On: Validation of Default

$ cat validationResults-cli-1-walltime.csv

"Time","Training Performance","Test Set Performance",[...]

0.0,0.0,0.49128888888888894,[...]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 89

Instance Features

Instance Features

Numerical characterizations of problem instances

Examples:

SAT: #variables, #clauses,. . .
Planning: #actions, #fluents,. . .
Machine Learning: #observations, #features,. . .

Can improve the accuracy of the EPM used in SMAC

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 90

Instance Features

Instance Features

Numerical characterizations of problem instances

Examples:

SAT: #variables, #clauses,. . .
Planning: #actions, #fluents,. . .
Machine Learning: #observations, #features,. . .

Can improve the accuracy of the EPM used in SMAC

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 90

Types of Instance Features

Counting Features

Compute some statistics about its characteristics

Probing Features

Running an algorithm for a short amount of time

Analyze how the algorithm behaves

For example, number of steps to the best local minimum in a run.

Please note that there are different names in literature for these types of
features. For example, probing features are related to landmarking
features.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 91

Types of Instance Features

Counting Features

Compute some statistics about its characteristics

Probing Features

Running an algorithm for a short amount of time

Analyze how the algorithm behaves

For example, number of steps to the best local minimum in a run.

Please note that there are different names in literature for these types of
features. For example, probing features are related to landmarking
features.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 91

Types of Instance Features

Counting Features

Compute some statistics about its characteristics

Probing Features

Running an algorithm for a short amount of time

Analyze how the algorithm behaves

For example, number of steps to the best local minimum in a run.

Please note that there are different names in literature for these types of
features. For example, probing features are related to landmarking
features.

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 91

Instance Features: SAT [Hutter et al, 2014]

Problem size features (7)

Variable-Clause graph features (10)

Variable graph features (9)

Clause graph features (10)

Balance features (13)

Proximity to horn formula (7)

DPLL Probing Features (7)

LP-based feature (6)

Local search probing features (12)

Clause learning features (18)

Survey propagation feature (18)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 92

http://arxiv.org/abs/1211.0906

Hands-On: Instance features for SAT

$ cd ~/AC-Tutorial/minisat-smac/

$ bash get_swv_minisat_features.sh > features.csv

$../smac-v2.10.03-master-778/smac

--scenarioFile scenario-features.txt

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 93

Another Toy Example: Pyperplan

Pyperplan is a simple planner

Developed for demonstration purposes on the University of Freiburg

Only 2 parameters: search heuristic and strategy

heuristic categorical {hmax,hff,hadd,blind,hsa,lmcut,landmark}[blind]

search categorical {ehs,gbf,wastar,astar,ids,bfs}[bfs]

→ 42 parameter configurations

Instance set: 15 elevator instances (training)

Cutoff time: 10 seconds

→ Worst case of trying all configurations on all instances:
10 · 15 · 42 = 6300 seconds

configuration budget: 600 seconds

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 94

Hands-On: Configuration of a Planner

$ cd ~/AC-Tutorial/pyperplan/

$../smac-v2.10.03-master-778/smac

--scenarioFile scenario.txt

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 95

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters
Ablation
Forward Selection
fANOVA

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 96

Parameter Importance

Recommendations & Observation

Configure all parameters that could influence performance

Dependent on the instance set, different parameters matter

How to determine the important parameters?

Example

SAT-solver lingeling has more than 300 parameters

Often, less than 10 are important to optimize performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 97

Parameter Importance

Recommendations & Observation

Configure all parameters that could influence performance

Dependent on the instance set, different parameters matter

How to determine the important parameters?

Example

SAT-solver lingeling has more than 300 parameters

Often, less than 10 are important to optimize performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 97

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters
Ablation
Forward Selection
fANOVA

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 98

Ablation [Fawcett et al. 2013]

Idea

Starting from the default configuration, we change the value of the
parameters

Which of these changes were important?

→ Ablation compares parameter flips between default and incumbent
configuration

Basic Approach

Iterate over all non-flipped parameters

Flip the parameter with the largest influence on the performance in each
iteration

Ablation with Racing

To determine the best flip in each iteration, use racing with a statistical test
to speed up the decision

→ do not assess the performance on all instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 99

http://www.cs.ubc.ca/~hoos/Publ/FawHoo13.pdf

Ablation [Fawcett et al. 2013]

Idea

Starting from the default configuration, we change the value of the
parameters

Which of these changes were important?

→ Ablation compares parameter flips between default and incumbent
configuration

Basic Approach

Iterate over all non-flipped parameters

Flip the parameter with the largest influence on the performance in each
iteration

Ablation with Racing

To determine the best flip in each iteration, use racing with a statistical test
to speed up the decision

→ do not assess the performance on all instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 99

http://www.cs.ubc.ca/~hoos/Publ/FawHoo13.pdf

Ablation [Fawcett et al. 2013]

Idea

Starting from the default configuration, we change the value of the
parameters

Which of these changes were important?

→ Ablation compares parameter flips between default and incumbent
configuration

Basic Approach

Iterate over all non-flipped parameters

Flip the parameter with the largest influence on the performance in each
iteration

Ablation with Racing

To determine the best flip in each iteration, use racing with a statistical test
to speed up the decision

→ do not assess the performance on all instancesHutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 99

http://www.cs.ubc.ca/~hoos/Publ/FawHoo13.pdf

Toy example: Ablation

θ1 θ2 θ3 m

Default 1 1 1 100
Conf 2 2 2 10

1st Iteration
2 1 1 90
1 2 1 30
1 1 2 100

Flip θ2

2nd Iteration
2 2 1 10
1 2 2 30

Flip θ1

3rd Iteration
2 2 2 10

Flip θ3

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 100

Ablation Example: Spear on SWV

Source: [Fawcett et al. 2013]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 101

http://www.cs.ubc.ca/~hoos/Publ/FawHoo13.pdf

Ablation Example: LGP on Zenotravel

Source: [Fawcett et al. 2013]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 102

http://www.cs.ubc.ca/~hoos/Publ/FawHoo13.pdf

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters
Ablation
Forward Selection
fANOVA

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 103

Forward Selection [Hutter et al. 2013]

Idea

Which parameters (or instance features) do we need to train a good
EPM (m̂ : Θ×F → R)?

Use forward selection to identify important parameters (/instances)

Feature Selection via Forward Selection

Iterative approach

Add in each iteration the parameter (/feature) that improves the
quality of the EPM the most

Details

Minimize RMSE (root mean squared error) on a validation set

Limit the maximal number of selected parameters (/features)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 104

http://aad.informatik.uni-freiburg.de/papers/13-LION-FeatureAndParameterImportance.pdf

Forward Selection [Hutter et al. 2013]

Idea

Which parameters (or instance features) do we need to train a good
EPM (m̂ : Θ×F → R)?

Use forward selection to identify important parameters (/instances)

Feature Selection via Forward Selection

Iterative approach

Add in each iteration the parameter (/feature) that improves the
quality of the EPM the most

Details

Minimize RMSE (root mean squared error) on a validation set

Limit the maximal number of selected parameters (/features)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 104

http://aad.informatik.uni-freiburg.de/papers/13-LION-FeatureAndParameterImportance.pdf

Forward Selection [Hutter et al. 2013]

Idea

Which parameters (or instance features) do we need to train a good
EPM (m̂ : Θ×F → R)?

Use forward selection to identify important parameters (/instances)

Feature Selection via Forward Selection

Iterative approach

Add in each iteration the parameter (/feature) that improves the
quality of the EPM the most

Details

Minimize RMSE (root mean squared error) on a validation set

Limit the maximal number of selected parameters (/features)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 104

http://aad.informatik.uni-freiburg.de/papers/13-LION-FeatureAndParameterImportance.pdf

Forward Selection [Hutter et al. 2013]

Spear on SWV

Source: [Hutter et al. 2013]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 105

http://aad.informatik.uni-freiburg.de/papers/13-LION-FeatureAndParameterImportance.pdf
http://aad.informatik.uni-freiburg.de/papers/13-LION-FeatureAndParameterImportance.pdf

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters
Ablation
Forward Selection
fANOVA

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 106

fANOVA [Hutter et al. 2014]

fANOVA [Sobol 1993]

Write performance predictions ŷ as a sum of components:

ŷ(θ1, . . . , θn) = f̂0 +
∑n

i=1 f̂i(θi) +
∑

i 6=j f̂ij(θi, θj) + . . .

ŷ(θ1, . . . , θn) = average response + main effects +

2-D interaction effects + higher order effects

Variance Decomposition

V =
1

||Θ||

∫
θ1

. . .

∫
θn

[(ŷ(θ)− f̂0)2]dθ1 . . . dθn

Application to Parameter Importance

How much of the variance can be explained by a parameter (or
combinations of parameters) marginalized over all other parameters?

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 107

http://aad.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment-longversion.pdf
http://www2.mae.ufl.edu/haftka/eoed/protected/Sobol%20Original%20Paper.pdf

fANOVA [Hutter et al. 2014]

fANOVA [Sobol 1993]

Write performance predictions ŷ as a sum of components:

ŷ(θ1, . . . , θn) = f̂0 +
∑n

i=1 f̂i(θi) +
∑

i 6=j f̂ij(θi, θj) + . . .

ŷ(θ1, . . . , θn) = average response + main effects +

2-D interaction effects + higher order effects

Variance Decomposition

V =
1

||Θ||

∫
θ1

. . .

∫
θn

[(ŷ(θ)− f̂0)2]dθ1 . . . dθn

Application to Parameter Importance

How much of the variance can be explained by a parameter (or
combinations of parameters) marginalized over all other parameters?

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 107

http://aad.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment-longversion.pdf
http://www2.mae.ufl.edu/haftka/eoed/protected/Sobol%20Original%20Paper.pdf

fANOVA [Hutter et al. 2014]

fANOVA [Sobol 1993]

Write performance predictions ŷ as a sum of components:

ŷ(θ1, . . . , θn) = f̂0 +
∑n

i=1 f̂i(θi) +
∑

i 6=j f̂ij(θi, θj) + . . .

ŷ(θ1, . . . , θn) = average response + main effects +

2-D interaction effects + higher order effects

Variance Decomposition

V =
1

||Θ||

∫
θ1

. . .

∫
θn

[(ŷ(θ)− f̂0)2]dθ1 . . . dθn

Application to Parameter Importance

How much of the variance can be explained by a parameter (or
combinations of parameters) marginalized over all other parameters?

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 107

http://aad.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment-longversion.pdf
http://www2.mae.ufl.edu/haftka/eoed/protected/Sobol%20Original%20Paper.pdf

fANOVA Example

lingeling on circuit fuzz

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 108

fANOVA Example

lingeling on circuit fuzz

0 seems to be a bad value for score

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 109

fANOVA Example

Interesting part of the configuration space

Consider only performance values better than the default

lingeling on circuit fuzz

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 110

fANOVA Example

lingeling on circuit fuzz

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 111

fANOVA Example

probSAT on 3-SAT instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 112

fANOVA Interaction Example

Sparrow on 5-SAT instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 113

fANOVA in SpySMAC

Look again at SpySMAC report from our MiniSAT example

$ firefox ~/AC-Tutorial/SpySMAC/minisat-report/index.html

More reports in
∼/AC-Tutorial/spysmac-reports

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 114

Comparison Ablation, Forward Selection & fANOVA

Ablation

+ Only method to compare two configurations

- Needs a lot of algorithm runs → slow

Forward Selection

+ EPM can be trained by the performance data collected during configuration

+/- Considers complete configuration space

- Slow if the training of the EPM is slow (repeated process!)

fANOVA

+ EPM can be trained by the performance data collected during configuration

+ Considers the complete configuration space or only “interesting” areas

- Importance of interactions between parameters can be expensive

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 115

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices
Overtuning
Wrapping the Target Algorithm
General Advice

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 116

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices
Overtuning
Wrapping the Target Algorithm
General Advice

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 117

The concept of overtuning

Very related to overfitting in machine learning

Performance improves on the training set

Performance does not improve on the test set, and may even degrade

More pronounced for more heterogeneous benchmark sets

But it even happens for very homogeneous sets

Indeed, one can even overfit on a single instance, to the seeds used
for training

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 118

The concept of overtuning

Very related to overfitting in machine learning

Performance improves on the training set

Performance does not improve on the test set, and may even degrade

More pronounced for more heterogeneous benchmark sets

But it even happens for very homogeneous sets

Indeed, one can even overfit on a single instance, to the seeds used
for training

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 118

Overtuning Visualized

Example: minimizing SLS solver runlengths for a single SAT instance

Training cost, here based on N=100 runs with different seeds

Test cost of θ̂ here based on 1000 new seeds

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 119

Overtuning Visualized

Example: minimizing SLS solver runlengths for a single SAT instance

Training cost, here based on N=100 runs with different seeds

Test cost of θ̂ here based on 1000 new seeds

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 119

Overtuning Visualized

Example: minimizing SLS solver runlengths for a single SAT instance

Training cost, here based on N=100 runs with different seeds

Test cost of θ̂ here based on 1000 new seeds

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 119

Overtuning is Stronger For Smaller Training Sets

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 120

BasicILS(N) Test Results with Various N

Small N : fast evaluations → quick progress, but overtunes

Large N : slow, but overtunes less

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 121

FocusedILS achieves the best of both worlds

Fast progress and no overtuning (provably, in the limit)

General principle: focus your budget on good configurations

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 122

FocusedILS achieves the best of both worlds

Fast progress and no overtuning (provably, in the limit)

General principle: focus your budget on good configurations

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 122

Hands-On: Overtuning to Fixed Seeds

Demonstration on the Simplest Case

The real issue is overtuning to subset of instances

But that would take too long to demo

In your virtual machine:

Limit SMAC to optimize on 1 seed vs. 100 seeds

$ cd AC-Tutorial/saps-overtuning/

$ vim scenario1.txt

$../smac-v2.10.03-master-778/smac --scenarioFile scenario1.txt

$ vim scenario100.txt

$../smac-v2.10.03-master-778/smac --scenarioFile scenario100.txt

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 123

Hands-On: Overtuning to Fixed Seeds

Demonstration on the Simplest Case

The real issue is overtuning to subset of instances

But that would take too long to demo

In your virtual machine:

Limit SMAC to optimize on 1 seed vs. 100 seeds

$ cd AC-Tutorial/saps-overtuning/

$ vim scenario1.txt

$../smac-v2.10.03-master-778/smac --scenarioFile scenario1.txt

$ vim scenario100.txt

$../smac-v2.10.03-master-778/smac --scenarioFile scenario100.txt

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 123

General advice: make solver’s randomness explicit

Several communities dislike randomness

Key arguments: reproducibility, tracking down bugs

I agree these are important

But you can achieve them by keeping track of your seeds

In fact: your tests will cover more cases when randomized

It’s much easier to get more seeds than more instances

Performance should generalize to new seeds

Otherwise, it’s less likely to generalize to new instances

If you have N instances and a budget for N runs

Do 1 run for each of the instances, with a different seed each

This simultaneously captures variance in instance & seed space

Provably yields lowest-variance estimator of mean performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 124

General advice: make solver’s randomness explicit

Several communities dislike randomness

Key arguments: reproducibility, tracking down bugs

I agree these are important

But you can achieve them by keeping track of your seeds

In fact: your tests will cover more cases when randomized

It’s much easier to get more seeds than more instances

Performance should generalize to new seeds

Otherwise, it’s less likely to generalize to new instances

If you have N instances and a budget for N runs

Do 1 run for each of the instances, with a different seed each

This simultaneously captures variance in instance & seed space

Provably yields lowest-variance estimator of mean performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 124

General advice: make solver’s randomness explicit

Several communities dislike randomness

Key arguments: reproducibility, tracking down bugs

I agree these are important

But you can achieve them by keeping track of your seeds

In fact: your tests will cover more cases when randomized

It’s much easier to get more seeds than more instances

Performance should generalize to new seeds

Otherwise, it’s less likely to generalize to new instances

If you have N instances and a budget for N runs

Do 1 run for each of the instances, with a different seed each

This simultaneously captures variance in instance & seed space

Provably yields lowest-variance estimator of mean performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 124

Different Types of Overtuning

One can overtune to various specifics of the training setup

To the specific instances used in the training set

To the specific seeds used in the training set

To the (small) runtime cutoff used during training

To a particular machine type

To the type of instances in the training set

These should just be drawn according to the distribution of interest
But in practice, the distribution might change over time

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 125

Different Types of Overtuning

One can overtune to various specifics of the training setup

To the specific instances used in the training set

To the specific seeds used in the training set

To the (small) runtime cutoff used during training

To a particular machine type

To the type of instances in the training set

These should just be drawn according to the distribution of interest
But in practice, the distribution might change over time

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 125

Different Types of Overtuning

One can overtune to various specifics of the training setup

To the specific instances used in the training set

To the specific seeds used in the training set

To the (small) runtime cutoff used during training

To a particular machine type

To the type of instances in the training set

These should just be drawn according to the distribution of interest
But in practice, the distribution might change over time

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 125

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices
Overtuning
Wrapping the Target Algorithm
General Advice

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 126

How to Wrap a Target Algorithm

Don’t trust any target algorithm

Will it terminate in the time you specify?

Will it correctly report its time?

Will it never use more memory than specified?

Will it yield correct results with all parameter settings?

Good Practice

Wrap target runs with tool controlling time and memory

E.g., runsolver [Roussel et al, 2012].

Our genericWrapper.py already does this for you

Good Practice

Verify correctness of target runs

Detect crashes & penalize them

Our genericWrapper.py already does the penalization for you

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 127

http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_12_Roussel.pdf

How to Wrap a Target Algorithm

Don’t trust any target algorithm

Will it terminate in the time you specify?

Will it correctly report its time?

Will it never use more memory than specified?

Will it yield correct results with all parameter settings?

Good Practice

Wrap target runs with tool controlling time and memory

E.g., runsolver [Roussel et al, 2012].

Our genericWrapper.py already does this for you

Good Practice

Verify correctness of target runs

Detect crashes & penalize them

Our genericWrapper.py already does the penalization for you

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 127

http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_12_Roussel.pdf

How to Wrap a Target Algorithm

Don’t trust any target algorithm

Will it terminate in the time you specify?

Will it correctly report its time?

Will it never use more memory than specified?

Will it yield correct results with all parameter settings?

Good Practice

Wrap target runs with tool controlling time and memory

E.g., runsolver [Roussel et al, 2012].

Our genericWrapper.py already does this for you

Good Practice

Verify correctness of target runs

Detect crashes & penalize them

Our genericWrapper.py already does the penalization for you

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 127

http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_12_Roussel.pdf

Pitfalls in Wrappers #1

Pitfall

Blindly minimizing target algorithm runtime

 Typically, you will minimize the time to crash

Anecdote 1

In 2007, with Daniel Le Berre, I configured SAT4J

I got huge improvements, emailed Daniel the configuration found

But there was a bug

- Some preprocessings were incompatible with some data structures
- Leading to a very quick (wrong) result UNSAT
- One solution: declare forbidden combinations

Lesson learned: verify correctness of target runs

E.g., for SAT: compare to known solubility status

E.g., for SAT: check assignment found (polytime)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 128

Pitfalls in Wrappers #1

Pitfall

Blindly minimizing target algorithm runtime

 Typically, you will minimize the time to crash

Anecdote 1

In 2007, with Daniel Le Berre, I configured SAT4J

I got huge improvements, emailed Daniel the configuration found

But there was a bug

- Some preprocessings were incompatible with some data structures
- Leading to a very quick (wrong) result UNSAT
- One solution: declare forbidden combinations

Lesson learned: verify correctness of target runs

E.g., for SAT: compare to known solubility status

E.g., for SAT: check assignment found (polytime)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 128

Pitfalls in Wrappers #1

Pitfall

Blindly minimizing target algorithm runtime

 Typically, you will minimize the time to crash

Anecdote 1

In 2007, with Daniel Le Berre, I configured SAT4J

I got huge improvements, emailed Daniel the configuration found

But there was a bug

- Some preprocessings were incompatible with some data structures
- Leading to a very quick (wrong) result UNSAT
- One solution: declare forbidden combinations

Lesson learned: verify correctness of target runs

E.g., for SAT: compare to known solubility status

E.g., for SAT: check assignment found (polytime)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 128

Pitfalls in Wrappers #2

Pitfall

Blindly minimizing target algorithm runtime

 Typically, you will minimize the time to crash

Anecdote 2

In 2010, I optimized several MIP solvers [Hutter et al, CPAIOR 2010]

I found many bugs

Non-default configurations are often poorly tested

You can use algorithm configuration for testing!

Anecdote 3

Some published work does indeed blindly minimize runtime

Avoid this in your own work

Ask about this in reviews etc

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 129

http://aad.informatik.uni-freiburg.de/papers/10-CPAIOR-MIP-Config.pdf

Pitfalls in Wrappers #2

Pitfall

Blindly minimizing target algorithm runtime

 Typically, you will minimize the time to crash

Anecdote 2

In 2010, I optimized several MIP solvers [Hutter et al, CPAIOR 2010]

I found many bugs

Non-default configurations are often poorly tested

You can use algorithm configuration for testing!

Anecdote 3

Some published work does indeed blindly minimize runtime

Avoid this in your own work

Ask about this in reviews etc

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 129

http://aad.informatik.uni-freiburg.de/papers/10-CPAIOR-MIP-Config.pdf

Pitfalls in Wrappers #3

Pitfall

Trusting the target algorithm to handle its time and memory

Anecdote 4

Configuring commercial MIP solvers was an eye-opener

Some runs didn’t end when not terminated externally

Reported runtimes were incorrect (sometimes negative!)

Jobs crashed on the cluster because memory limit was not honoured

Disclaimer: code versions from 2010.

Lesson Learned

Once bitten, twice shy. Don’t trust your target algorithm!

Use runsolver (or similar) to control time & memory

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 130

Pitfalls in Wrappers #3

Pitfall

Trusting the target algorithm to handle its time and memory

Anecdote 4

Configuring commercial MIP solvers was an eye-opener

Some runs didn’t end when not terminated externally

Reported runtimes were incorrect (sometimes negative!)

Jobs crashed on the cluster because memory limit was not honoured

Disclaimer: code versions from 2010.

Lesson Learned

Once bitten, twice shy. Don’t trust your target algorithm!

Use runsolver (or similar) to control time & memory

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 130

Pitfalls in Wrappers #4

Pitfall

Using different wrappers for comparing different configurators

Anecdote 5

While developing SMAC, I compared it to ParamILS for tuning UBCSAT

Somehow, SMAC achieved runtimes 20% better than ‘possible’

I had even used the same wrapper

Only difference: ParamILS used an absolute path to the instance on
the file system, SMAC a relative one

Explanation:

- UBCSAT saved its callstring in the heap space before the instance data
- Thus, the length of the callstring affected memory locality
- Thus, more cache misses when using absolute paths
→ 20% greater runtime

- Now fixed in UBCSAT

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 131

Pitfalls in Wrappers #4

Pitfall

Using different wrappers for comparing different configurators

Anecdote 5

While developing SMAC, I compared it to ParamILS for tuning UBCSAT

Somehow, SMAC achieved runtimes 20% better than ‘possible’

I had even used the same wrapper

Only difference: ParamILS used an absolute path to the instance on
the file system, SMAC a relative one

Explanation:

- UBCSAT saved its callstring in the heap space before the instance data
- Thus, the length of the callstring affected memory locality
- Thus, more cache misses when using absolute paths
→ 20% greater runtime

- Now fixed in UBCSAT

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 131

Pitfalls in Wrappers #4

Pitfall

Using different wrappers for comparing different configurators

Anecdote 5

While developing SMAC, I compared it to ParamILS for tuning UBCSAT

Somehow, SMAC achieved runtimes 20% better than ‘possible’

I had even used the same wrapper

Only difference: ParamILS used an absolute path to the instance on
the file system, SMAC a relative one

Explanation:

- UBCSAT saved its callstring in the heap space before the instance data
- Thus, the length of the callstring affected memory locality
- Thus, more cache misses when using absolute paths
→ 20% greater runtime

- Now fixed in UBCSAT

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 131

Pitfalls in Wrappers #5

Pitfall

Using different wrappers for comparing different configurators

Anecdote 6

A new configurator was introduced and compared to SMAC

Wrapper for SMAC had several bugs, breaking the comparison

Authors did not notice; paper published

Bug 1: regular expressions

if (’s SATISFIABLE\n’ in lines) or (’s UNSATISFIABLE’ in lines)

Missing \n after UNSATISFIABLE

 all UNSAT instances counted as TIMEOUT

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 132

Pitfalls in Wrappers #5

Pitfall

Using different wrappers for comparing different configurators

Anecdote 6

A new configurator was introduced and compared to SMAC

Wrapper for SMAC had several bugs, breaking the comparison

Authors did not notice; paper published

Bug 1: regular expressions

if (’s SATISFIABLE\n’ in lines) or (’s UNSATISFIABLE’ in lines)

Missing \n after UNSATISFIABLE

 all UNSAT instances counted as TIMEOUT

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 132

Pitfalls in Wrappers #5

Pitfall

Using different wrappers for comparing different configurators

Anecdote 6

A new configurator was introduced and compared to SMAC

Wrapper for SMAC had several bugs, breaking the comparison

Authors did not notice; paper published

Bug 2: terminating the target algorithm

p = subprocess.Popen(cmd, shell=True)

...

os.kill(p.pid, signal.SIGKILL)

Main problem: using shell=true

- Leads to killing the shell, but not the target algorithm inside it

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 133

Lessons Learned for Comparisons of Configurators

It is far too easy to introduce a subtle difference in a new wrapper

Check: solver callstrings have to be identical for same configuration

If possible, extend our genericWrapper.py from AClib

Use standard scenarios for comparing configurators: AClib

We have a benchmark library of > 300 AC scenarios

http://www.aclib.net

Based on a git repository, maintained by several research groups

As in other communities, reporting results on known benchmarks
should be mandatory

Please contribute new scenarios

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 134

http://www.aclib.net

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices
Overtuning
Wrapping the Target Algorithm
General Advice

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 135

Choosing the Training Instances #1

Split instance set into training and test sets

Configure on the training instances → configuration θ̂

Run (only) θ̂ on the test instances → unbiased performance estimate

Pitfall

Configuring on your test instances

→ overtuning effects – no unbiased performance estimate

Correct

Fine practice: do multiple configuration runs and pick the θ̂ with the best
training performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 136

Choosing the Training Instances #1

Split instance set into training and test sets

Configure on the training instances → configuration θ̂

Run (only) θ̂ on the test instances → unbiased performance estimate

Pitfall

Configuring on your test instances

→ overtuning effects – no unbiased performance estimate

Correct

Fine practice: do multiple configuration runs and pick the θ̂ with the best
training performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 136

Choosing the Training Instances #1

Split instance set into training and test sets

Configure on the training instances → configuration θ̂

Run (only) θ̂ on the test instances → unbiased performance estimate

Pitfall

Configuring on your test instances

→ overtuning effects – no unbiased performance estimate

Correct

Fine practice: do multiple configuration runs and pick the θ̂ with the best
training performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 136

Choosing the Training Instances #2

AC works much better on homogeneous instance sets

Instances have something in common

E.g., come from the same problem domain
E.g., use the same encoding

One configuration likely to perform well on all instances

Pitfall

Configuration on too heterogeneous sets

There often is no single great overall configuration
(see advanced topics for combinations with algorithm selection)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 137

Choosing the Training Instances #2

AC works much better on homogeneous instance sets

Instances have something in common

E.g., come from the same problem domain
E.g., use the same encoding

One configuration likely to perform well on all instances

Pitfall

Configuration on too heterogeneous sets

There often is no single great overall configuration
(see advanced topics for combinations with algorithm selection)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 137

Choosing the Training Instances: Recommendation

Representative instances

Representative of the instances you want to solve later

Moderately hard instances

Too hard: will not solve many instances, no traction

Too easy: will results generalize to harder instances?

Rule of thumb: mix of hardness ranges

Roughly 75% instances solvable by default in maximal cutoff time

Enough instances

The more training instances the better

Very homogeneous instance sets: 50 instances might suffice

Preferably ≥ 300 instances, better even ≥ 1000 instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 138

Choosing the Training Instances: Recommendation

Representative instances

Representative of the instances you want to solve later

Moderately hard instances

Too hard: will not solve many instances, no traction

Too easy: will results generalize to harder instances?

Rule of thumb: mix of hardness ranges

Roughly 75% instances solvable by default in maximal cutoff time

Enough instances

The more training instances the better

Very homogeneous instance sets: 50 instances might suffice

Preferably ≥ 300 instances, better even ≥ 1000 instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 138

Choosing the Training Instances: Recommendation

Representative instances

Representative of the instances you want to solve later

Moderately hard instances

Too hard: will not solve many instances, no traction

Too easy: will results generalize to harder instances?

Rule of thumb: mix of hardness ranges

Roughly 75% instances solvable by default in maximal cutoff time

Enough instances

The more training instances the better

Very homogeneous instance sets: 50 instances might suffice

Preferably ≥ 300 instances, better even ≥ 1000 instances

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 138

Using parallel computation

Simplest method: use multiple independent configurator runs

This can work very well [Hutter et al, LION 2012]

FocusedILS: basically linear speedups with up to 16 runs

SMAC: about 8-fold speedup with 16 runs

Distributed SMAC (d-SMAC) [Hutter et al, LION 2012]

Up to 50-fold speedups with 64 workers

- But so far synchronous parallelization

- Not applicable for runtime optimization

Parallel SMAC (p-SMAC) [unpublished]

Simple asynchronous scheme

Simply exectue k different SMAC runs with different seeds

Add --shared-model-mode true

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 139

http://aad.informatik.uni-freiburg.de/papers/12-LION-Parallel_AC.pdf
http://aad.informatik.uni-freiburg.de/papers/12-LION-Parallel_AC.pdf

Using parallel computation

Simplest method: use multiple independent configurator runs

This can work very well [Hutter et al, LION 2012]

FocusedILS: basically linear speedups with up to 16 runs

SMAC: about 8-fold speedup with 16 runs

Distributed SMAC (d-SMAC) [Hutter et al, LION 2012]

Up to 50-fold speedups with 64 workers

- But so far synchronous parallelization

- Not applicable for runtime optimization

Parallel SMAC (p-SMAC) [unpublished]

Simple asynchronous scheme

Simply exectue k different SMAC runs with different seeds

Add --shared-model-mode true

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 139

http://aad.informatik.uni-freiburg.de/papers/12-LION-Parallel_AC.pdf
http://aad.informatik.uni-freiburg.de/papers/12-LION-Parallel_AC.pdf

Using parallel computation

Simplest method: use multiple independent configurator runs

This can work very well [Hutter et al, LION 2012]

FocusedILS: basically linear speedups with up to 16 runs

SMAC: about 8-fold speedup with 16 runs

Distributed SMAC (d-SMAC) [Hutter et al, LION 2012]

Up to 50-fold speedups with 64 workers

- But so far synchronous parallelization

- Not applicable for runtime optimization

Parallel SMAC (p-SMAC) [unpublished]

Simple asynchronous scheme

Simply exectue k different SMAC runs with different seeds

Add --shared-model-mode true

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 139

http://aad.informatik.uni-freiburg.de/papers/12-LION-Parallel_AC.pdf
http://aad.informatik.uni-freiburg.de/papers/12-LION-Parallel_AC.pdf

Further tips and tricks with SMAC

There is extensive documentation

http://aclib.net/smac

Quickstart guide, FAQ, extensive manual

E.g., resuming SMAC runs, warmstarting with previous runs, etc.

Ask questions in the SMAC Forum

https://groups.google.com/forum/#!forum/smac-forum

It can also help to read through others’ issues and solutions

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 140

http://aclib.net/smac
https://groups.google.com/forum/#!forum/smac-forum

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics
Algorithm Configuration on Heterogeneous Data
More on Automated Machine Learning

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 141

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics
Algorithm Configuration on Heterogeneous Data
More on Automated Machine Learning

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 142

Algorithm Configuration on Heterogeneous Instances

Known Problem

Algorithm configuration only performs well on homogeneous instance sets

It only aims to find the single best configuration

For heterogeneous instances, there might not be a single great
configuration

- That’s why algorithm portfolios are so successful

Known Solution: Combine Algorithm Configuration & Portfolios

1 Use algorithm configuration to determine a set of complementary
configurations

2 Build a portfolio out of these

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 143

Algorithm Configuration on Heterogeneous Instances

Known Problem

Algorithm configuration only performs well on homogeneous instance sets

It only aims to find the single best configuration

For heterogeneous instances, there might not be a single great
configuration

- That’s why algorithm portfolios are so successful

Known Solution: Combine Algorithm Configuration & Portfolios

1 Use algorithm configuration to determine a set of complementary
configurations

2 Build a portfolio out of these

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 143

Manual Expert Approach

Basic Assumption

Heterogeneous instance set can be divided into homogeneous subsets

Manual Expert

An expert knows the homogeneous subsets (e.g., origin of instances)

Determine a well-performing configuration on each subset

E.g., using algorithm configuration
 portfolio of configurations

Use algorithm selection to select the right configuration for each
instance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 144

Manual Expert Approach

Basic Assumption

Heterogeneous instance set can be divided into homogeneous subsets

Manual Expert

An expert knows the homogeneous subsets (e.g., origin of instances)

Determine a well-performing configuration on each subset

E.g., using algorithm configuration
 portfolio of configurations

Use algorithm selection to select the right configuration for each
instance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 144

Instance-Specific Algorithm Configuration: ISAC
[Kadioglu et al. 2010]

Idea

Training:

1 Cluster instances into homogeneous subsets (using g-means in the
instance feature space)

2 Apply algorithm configuration on each instance set

Test:

1 Determine the nearest cluster (k-NN with k = 1) in feature space

2 Apply optimized configuration of this cluster

Assumes that instances with similar features can be solved well by similar
configurations

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 145

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx5dXJpbWFsaXRza3l8Z3g6MjM4ZDEyNzMwYTAxODQ2OA

Instance-Specific Algorithm Configuration: ISAC
[Kadioglu et al. 2010]

Idea

Training:

1 Cluster instances into homogeneous subsets (using g-means in the
instance feature space)

2 Apply algorithm configuration on each instance set

Test:

1 Determine the nearest cluster (k-NN with k = 1) in feature space

2 Apply optimized configuration of this cluster

Assumes that instances with similar features can be solved well by similar
configurations

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 145

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx5dXJpbWFsaXRza3l8Z3g6MjM4ZDEyNzMwYTAxODQ2OA

Instance-Specific Algorithm Configuration: ISAC
[Kadioglu et al. 2010]

Idea

Training:

1 Cluster instances into homogeneous subsets (using g-means in the
instance feature space)

2 Apply algorithm configuration on each instance set

Test:

1 Determine the nearest cluster (k-NN with k = 1) in feature space

2 Apply optimized configuration of this cluster

Assumes that instances with similar features can be solved well by similar
configurations

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 145

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx5dXJpbWFsaXRza3l8Z3g6MjM4ZDEyNzMwYTAxODQ2OA

ISAC+ [Malitsky et al. 2014]

Observations

No need to restrict selection to the configuration found on a cluster

Arbitrary algorithm selection approach possible

Idea
1 Cluster instances

2 Apply algorithm configuration on each cluster

3 Build a portfolio out of all these configurations

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 146

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx5dXJpbWFsaXRza3l8Z3g6MTFiNTY4YjYwZTZiOGYzYg

ISAC+ [Malitsky et al. 2014]

Observations

No need to restrict selection to the configuration found on a cluster

Arbitrary algorithm selection approach possible

Idea
1 Cluster instances

2 Apply algorithm configuration on each cluster

3 Build a portfolio out of all these configurations

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 146

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx5dXJpbWFsaXRza3l8Z3g6MTFiNTY4YjYwZTZiOGYzYg

Hydra [Xu et al. 2010]

Idea

Iteratively add configurations to a portfolio P, start with P = ∅
In each iteration: add a configuration that is complementary to P

Marginal contribution of a configuration θ to a portfolio P

m(P)−m(P ∪ {θ})

Configuration Task

Instances I

Algorithm A and
its Configuration

Space Θ

Select θ ∈ θ
and i ∈ I

P =

Return Performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 147

http://www.cs.ubc.ca/~hoos/Publ/XuEtAl10.pdf

Hydra [Xu et al. 2010]

Idea

Iteratively add configurations to a portfolio P, start with P = ∅
In each iteration: add a configuration that is complementary to P

Marginal contribution of a configuration θ to a portfolio P

m(P)−m(P ∪ {θ})

Configuration Task

Instances I

Algorithm A and
its Configuration

Space Θ

Select θ ∈ θ
and i ∈ I

P =

Return Performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 147

http://www.cs.ubc.ca/~hoos/Publ/XuEtAl10.pdf

Hydra [Xu et al. 2010]

Idea

Iteratively add configurations to a portfolio P, start with P = ∅
In each iteration: add a configuration that is complementary to P

Marginal contribution of a configuration θ to a portfolio P

m(P)−m(P ∪ {θ})

Configuration Task

Instances I

Algorithm A and
its Configuration

Space Θ

Select θ ∈ θ
and i ∈ I

Assess
A(θ) on i

P ={}

{}
Return Performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 147

http://www.cs.ubc.ca/~hoos/Publ/XuEtAl10.pdf

Hydra [Xu et al. 2010]

Idea

Iteratively add configurations to a portfolio P, start with P = ∅
In each iteration: add a configuration that is complementary to P

Marginal contribution of a configuration θ to a portfolio P

m(P)−m(P ∪ {θ})

Configuration Task

Instances I

Algorithm A and
its Configuration

Space Θ

Select θ ∈ θ
and i ∈ I

Assess
A(θ) on i

P ={θ1}

θ1

Return Performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 147

http://www.cs.ubc.ca/~hoos/Publ/XuEtAl10.pdf

Hydra [Xu et al. 2010]

Idea

Iteratively add configurations to a portfolio P, start with P = ∅
In each iteration: add a configuration that is complementary to P

Marginal contribution of a configuration θ to a portfolio P

m(P)−m(P ∪ {θ})

Configuration Task

Instances I

Algorithm A and
its Configuration

Space Θ

Select θ ∈ θ
and i ∈ I

Assess
A(θ||θ1) on i

P ={θ1}

{θ1}
Return Performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 147

http://www.cs.ubc.ca/~hoos/Publ/XuEtAl10.pdf

Hydra [Xu et al. 2010]

Idea

Iteratively add configurations to a portfolio P, start with P = ∅
In each iteration: add a configuration that is complementary to P

Marginal contribution of a configuration θ to a portfolio P

m(P)−m(P ∪ {θ})

Configuration Task

Instances I

Algorithm A and
its Configuration

Space Θ

Select θ ∈ θ
and i ∈ I

Assess
A(θ||θ1) on i

P ={θ1, θ2}

θ2

Return Performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 147

http://www.cs.ubc.ca/~hoos/Publ/XuEtAl10.pdf

Hydra [Xu et al. 2010]

Idea

Iteratively add configurations to a portfolio P, start with P = ∅
In each iteration: add a configuration that is complementary to P

Marginal contribution of a configuration θ to a portfolio P

m(P)−m(P ∪ {θ})

Configuration Task

Instances I

Algorithm A and
its Configuration

Space Θ

Select θ ∈ θ
and i ∈ I

Assess
A(θ||θ1||θ2) on i

P ={θ1, θ2}

{θ1, θ2}
Return Performance

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 147

http://www.cs.ubc.ca/~hoos/Publ/XuEtAl10.pdf

Cedalion [J. Seipp et al 2014]

Idea

Optimize a schedule of configurations with algorithm configuration

Approach

Iteratively add a configuration with a time slot t to a schedule
S ⊕ 〈θ, t〉
The time slot is a further parameter in the configuration space

Optimize marginal contribution per time spent:

m(S)−m(S ⊕ 〈θ, t〉)
t

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 148

http://aad.informatik.uni-freiburg.de/papers/15-AAAI-Cedalion.pdf

Cedalion [J. Seipp et al 2014]

Idea

Optimize a schedule of configurations with algorithm configuration

Approach

Iteratively add a configuration with a time slot t to a schedule
S ⊕ 〈θ, t〉

The time slot is a further parameter in the configuration space

Optimize marginal contribution per time spent:

m(S)−m(S ⊕ 〈θ, t〉)
t

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 148

http://aad.informatik.uni-freiburg.de/papers/15-AAAI-Cedalion.pdf

Cedalion [J. Seipp et al 2014]

Idea

Optimize a schedule of configurations with algorithm configuration

Approach

Iteratively add a configuration with a time slot t to a schedule
S ⊕ 〈θ, t〉
The time slot is a further parameter in the configuration space

Optimize marginal contribution per time spent:

m(S)−m(S ⊕ 〈θ, t〉)
t

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 148

http://aad.informatik.uni-freiburg.de/papers/15-AAAI-Cedalion.pdf

Submodularity

Oberservation

Performance metrics of Hydra and Cedalion are submodular

Diminishing returns: a configuration improves a smaller portfolio more
than a larger one

Definition (Submodularity of f)

For every X,Y with X ⊆ Y and every x we have that
f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y)

Advantage

We can bound the error of the portfolio/schedule
(see [Streeter & Golovin ’07]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 149

http://www.aaai.org/Papers/ICAPS/2007/ICAPS07-040.pdf

Submodularity

Oberservation

Performance metrics of Hydra and Cedalion are submodular

Diminishing returns: a configuration improves a smaller portfolio more
than a larger one

Definition (Submodularity of f)

For every X,Y with X ⊆ Y and every x we have that
f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y)

Advantage

We can bound the error of the portfolio/schedule
(see [Streeter & Golovin ’07]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 149

http://www.aaai.org/Papers/ICAPS/2007/ICAPS07-040.pdf

Submodularity

Oberservation

Performance metrics of Hydra and Cedalion are submodular

Diminishing returns: a configuration improves a smaller portfolio more
than a larger one

Definition (Submodularity of f)

For every X,Y with X ⊆ Y and every x we have that
f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y)

Advantage

We can bound the error of the portfolio/schedule
(see [Streeter & Golovin ’07]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 149

http://www.aaai.org/Papers/ICAPS/2007/ICAPS07-040.pdf

Further Combinations

Algorithms and
Configurations

Algorithm
Selection

Algorithm
Schedule

Algorithm
Configuration

Selection of Configurators

Configuration of Selectors

Selection of
Schedules

Schedules of
Selectors

Schedules of
Configurators

Configuration
of Schedules

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 150

Further Combinations

ACPP: Automatic construction of a parallel portfolio solver
[Hoos et al. 2012]

AutoFolio: configuration of an algorithm selector
[Lindauer et al. 2015]

Sunny : Predict an algorithm schedule for a given instance
[Amadini et al. ’13-’15]

Predict the best configuration for a given instance (e.g., [Bossek et al.

2015])

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 151

http://aad.informatik.uni-freiburg.de/papers/12-COCOMILE-holescsc12a.pdf
http://aad.informatik.uni-freiburg.de/papers/15-JAIR-Autofolio.pdf
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9303098&fileId=S1471068414000179
http://dl.acm.org/citation.cfm?doid=2739480.2754673
http://dl.acm.org/citation.cfm?doid=2739480.2754673

Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics
Algorithm Configuration on Heterogeneous Data
More on Automated Machine Learning

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 152

Auto-Sklearn

Extensions to AutoWEKA’s AutoML approach

Meta-learning to warmstart Bayesian optimization

Automated posthoc ensemble construction to combine the models
Bayesian optimization evaluated

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 153

Hands-on: Auto-sklearn

In your virtual machine:

Run a linear SVM and Auto-sklearn

$ cd AC-Tutorial/auto-sklearn/

$ vim autosklearn-example_restricted_to_svc.py

$ python autosklearn-example_restricted_to_svc.py

$ vim autosklearn-example_with_cv.py

$ python autosklearn-example_with_cv.py

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 154

Auto-sklearn: Ready for Prime Time

State-of-the-art AutoML framework

Best approach in ongoing ChaLearn AutoML challenge

Outperformed 100s of teams of human experts

Trivial to use
import autosklearn.classification as cls

automl = cls.AutoSklearnClassifier()

automl.fit(X_train, y_train)

y_hat = automl.predict(X_test)

Availabe online

https://github.com/automl/auto-sklearn

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 155

https://github.com/automl/auto-sklearn

Auto-sklearn: Ready for Prime Time

State-of-the-art AutoML framework

Best approach in ongoing ChaLearn AutoML challenge

Outperformed 100s of teams of human experts

Trivial to use
import autosklearn.classification as cls

automl = cls.AutoSklearnClassifier()

automl.fit(X_train, y_train)

y_hat = automl.predict(X_test)

Availabe online

https://github.com/automl/auto-sklearn

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 155

https://github.com/automl/auto-sklearn

Auto-sklearn: Ready for Prime Time

State-of-the-art AutoML framework

Best approach in ongoing ChaLearn AutoML challenge

Outperformed 100s of teams of human experts

Trivial to use
import autosklearn.classification as cls

automl = cls.AutoSklearnClassifier()

automl.fit(X_train, y_train)

y_hat = automl.predict(X_test)

Availabe online

https://github.com/automl/auto-sklearn

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 155

https://github.com/automl/auto-sklearn

Algorithm configuration also applies to deep learning

State of the art for deep network hyperparameter optimization

For few continuous hyperparameters: Bayesian optimization methods
based on Gaussian processes perform best

Many/discrete/conditional hyperparameters: SMAC performs best

References: [Eggensperger et al, BayesOpt 2013], [Domhan et al, IJCAI 2015]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 156

http://aad.informatik.uni-freiburg.de/papers/13-BayesOpt_EmpiricalFoundation.pdf
http://aad.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf

Algorithm configuration also applies to deep learning

State of the art for deep network hyperparameter optimization

For few continuous hyperparameters: Bayesian optimization methods
based on Gaussian processes perform best

Many/discrete/conditional hyperparameters: SMAC performs best

References: [Eggensperger et al, BayesOpt 2013], [Domhan et al, IJCAI 2015]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 156

http://aad.informatik.uni-freiburg.de/papers/13-BayesOpt_EmpiricalFoundation.pdf
http://aad.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf

Time-permitting: extrapolating learning curves of
stochastic gradient descent performance to later time steps

𝑦1:𝑛
train

𝑦𝑙𝑎𝑠𝑡
 test

Observe initial part of learning curve

Probabilisticially predict remainder of learning curve

Reference: [Domhan et al, IJCAI 2015]

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 157

http://aad.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf

Examples of SGD learning curves in deep learning

Learning curves for 1000
hyperparameter settings

Learning curves for a random
sample of these

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 158

Idea for extrapolation: fitting a parametric function

Increasing, saturating functions

E.g., pow3 function with 3 parameters c, a, α
y = pow3(x | c, a, α) = c− ax−α (where x=epoch, y=accuracy)

Fitting those parameters: optimize fit using gradient-based methods

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 159

Advanced variants of extrapolation

No single parametric family performs best

We fit convex combinations of 11 different parametric families

In practice, we’d also like uncertainty estimates
Optimizing parameters yields a single fit
Sampling parameters yields a distribution of fits

- Sample parameters according to their posterior probability
(using Markov Chain Monte Carlo; beyond scope of this course)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 160

Advanced variants of extrapolation

No single parametric family performs best

We fit convex combinations of 11 different parametric families

In practice, we’d also like uncertainty estimates
Optimizing parameters yields a single fit
Sampling parameters yields a distribution of fits

- Sample parameters according to their posterior probability
(using Markov Chain Monte Carlo; beyond scope of this course)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 160

Advanced variants of extrapolation

No single parametric family performs best

We fit convex combinations of 11 different parametric families

In practice, we’d also like uncertainty estimates
Optimizing parameters yields a single fit
Sampling parameters yields a distribution of fits

- Sample parameters according to their posterior probability
(using Markov Chain Monte Carlo; beyond scope of this course)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 160

Qualitative results

Learning curves for 1000
hyperparameter settings

Bad curves are terminated early

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 161

Quantitative results

2-fold speedup of DNN structure & hyperparameter optimization

For several network architectures, including state-of-the-art

For several optimizers (SMAC, TPE, random search)

New state-of-the-art for CIFAR without data augmentation

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 162

Summary

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Advanced Topics

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 163

Take-away messages

Algorithm configuration is very versatile

Improves results, increases productivity

Enables automated machine learning

What you need to use algorithm configuration

An algorithm with exposed parameters

An instance distribution/set

A performance metric you care about

You know about field X. What can you contribute?

Case study applying algorithm configuration to X

Construct better features for X

Build a system: Auto-X (like Auto-sklearn)

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 164

	The Algorithm Configuration Problem
	Problem Statement
	Motivation: a Few Success Stories
	Overview of Methods

	Using AC Systems
	SpySMAC: A SAT Python Tool for AC
	pySMAC: A Python Interface to AC
	SMAC: Full Flexibility for AC

	Importance of Parameters
	Ablation
	Forward Selection
	fANOVA

	Pitfalls and Best Practices
	Overtuning
	Wrapping the Target Algorithm
	General Advice

	Advanced Topics
	Algorithm Configuration on Heterogeneous Data
	More on Automated Machine Learning

