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Ever looked into --help?

MiniSat (10 parameters)
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Ever looked into --help?

Glucose (20 parameters)
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Ever looked into --help?

lingeling (> 300 parameters)
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Importance of Algorithm Configuration?

SAT Competition

Submission of a solver

Same parameter configuration on all instances

→ Robust performance across instances

Configurable SAT Solver Challenge (CSSC)

Submission of a solver

We tuned the parameter configuration for each instance set

→ Peak performance on each set
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Importance of Algorithm Configuration? (Example from
CSSC)

Lingeling on CircuitFuzz (#TOs: 30→ 18)
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Importance of Algorithm Configuration? (Example from
CSSC)

Clasp on Rooks (#TOs: 81→ 0)
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Importance of Algorithm Configuration? (Example from
CSSC)

ProbSAT on 5SAT500 (#TOs: 250→ 0)
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What is this lecture about?

In a Nutshell: Algorithm Configuration

How to automatically determine a well-performing parameter
configuration?

Focus on basics
1 State-of-the-art in algorithm configuration

2 Parameter importance

3 Pitfalls and best practices in algorithm configuration

Please ask questions

No special background assumed

All literature references are hyperlinks

Slides at: www.ml4aad.org
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Outline

1 The Algorithm Configuration Problem
Problem Statement
Motivation: a Success Stories
Overview of Methods

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Final Remarks
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Algorithm Parameters

Parameter Types

Continuous, integer, ordinal

Categorical: finite domain, unordered, e.g., {apple, tomato, pepper}

Parameter space has structure

E.g., parameter θ2 of heuristic H is only active if H is used (θ1 = H)

In this case, we say θ2 is a conditional parameter with parent θ1

Sometimes, some combinations of parameter settings are forbidden
e.g., the combination of θ3 = 1 and θ4 = 2 is forbidden

Parameters give rise to a structured space of configurations

Many configurations (e.g., SAT solver lingeling with 10947 )

Configurations often yield qualitatively different behaviour

→ Algorithm Configuration (as opposed to “parameter tuning”)
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Parameters of MiniSAT

MiniSAT
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Algorithm Configuration Visualized
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Algorithm Configuration – in More Detail

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I

Run A(θ) on π to
measure m(θ, π)

Returns Best
Configuration θ̂

Return Cost

Definition: algorithm configuration

Given:

a parameterized algorithm A with possible parameter settings Θ;

a distribution D over problem instances with domain I; and

a cost metric m : Θ× I → R,

Find: θ∗ ∈ arg minθ∈ΘEπ∼D(m(θ, π)).
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Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Formal verification

Software verification [Babić & Hu; CAV ’07]

Hardware verification (Bounded model checking) [Zarpas; SAT ’05]

Tree search solver for SAT-based verification

SPEAR, developed by Domagoj Babić at UBC

26 parameters, 8.34× 1017 configurations

Lindauer AC Introduction SAT Summer School 2016, Lisbon 17
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Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran ParamILS , 2 days × 10 machines
– On a training set from each benchmark

Compared to manually-engineered configuration
– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances
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Algorithm Configuration is Widely Applicable

Hard combinatorial problems

- SAT, MIP, TSP, AI planning,
ASP, Time-tabling, ...

- UBC exam time-tabling since 2010

Game Theory: Kidney Exchange

Mobile Robotics

Monte Carlo Localization

Motion Capture

Machine Learning

- Automated Machine Learning
- Deep Learning

Also popular in industry

Better performance

Increased productivity

Lindauer AC Introduction SAT Summer School 2016, Lisbon 19



Outline

1 The Algorithm Configuration Problem
Problem Statement
Motivation: a Success Stories
Overview of Methods

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Final Remarks
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Challenges of Algorithm Configuration

Expensive Algorithm Runs

Evaluation of 1 configuration on 1 instance is already expensive
(solving a NP problem)

Evaluation of n > 1000 configurations on m > 100 instances can be
infeasible in practice

Structured high-dimensional parameter space

Categorical vs. continuous parameters

Conditionals between parameters

Stochastic optimization

Randomized algorithms: optimization across various seeds

Distribution of benchmark instances (often wide range of hardness)

Subsumes so-called multi-armed bandit problem

Lindauer AC Introduction SAT Summer School 2016, Lisbon 21
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Algorithm Configuration: Components

1 Which configuration to choose?

2 How to evaluate a configuration?

Lindauer AC Introduction SAT Summer School 2016, Lisbon 22



Component 1: Which Configuration to Choose?

For this component, we can consider a simpler problem:
Blackbox function optimization: minθ∈Θ f(θ)

Only mode of interaction: query f(θ) at arbitrary θ ∈ Θ

Abstracts away the complexity of evaluating multiple instances

A query is expensive

Θ is still a structured space

Mixed continuous/discrete
Conditional parameters
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Component 1: Which Configuration to Evaluate?

Trade-off between diversification and intensification

The extremes

- Random search
- Gradient Descent

How would you solve this problem?

Stochastic local search (SLS)

Population-based methods

Model-based Optimization (e.g. Bayesian Optimization)

. . .
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Component 2: How to Evaluate a Configuration?

Back to the general algorithm configuration problem

Distribution over problem instances with domain I;

Performance metric m : Θ× I → R

c(θ) = Eπ∼D(m(θ, π))

Simplest, suboptimal solution: use N runs for each evaluation

Treats the problem as a blackbox function optimization problem

Issue: how large to choose N?

- too small: overtuning
- too large: every function evaluation is slow

General principle to strive for

Don’t waste time on bad configurations

Evaluate good configurations more thoroughly
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Racing algorithms: the general approach

Problem: which one of N candidate algorithms is best?

Start with empty set of runs for each algorithm

Iteratively:

Perform one run each
Discard inferior candidates
E.g., as judged by a statistical test (e.g., F-race uses an F-test)

Stop when a single candidate remains or configuration budget expires

Lindauer AC Introduction SAT Summer School 2016, Lisbon 26



Saving Time: Aggressive Racing

Race new configurations against the best known

- Discard poor new configurations quickly
- No requirement for statistical domination
- Evaluate best configurations with many runs

Search component should allow to return to configurations discarded
because they were “unlucky”

Lindauer AC Introduction SAT Summer School 2016, Lisbon 27
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Saving More Time: Adaptive Capping

When minimizing algorithm runtime,
we can terminate runs for poor configurations θ′ early:

Is θ′ better than θ?

- Example:

Can terminate evaluation of θ′ once guaranteed to be worse than θ

Lindauer AC Introduction SAT Summer School 2016, Lisbon 28
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General algorithm configuration systems

ParamILS [Hutter et al, 2007 & 2009]

Gender-based Genetic Algorithm (GGA) [Ansotegui et al, 2009]

Iterated F-Race [López-Ibáñez et al, 2011]

Sequential Model-based Algorithm Configuration (SMAC)
[Hutter et al, since 2011]

Lindauer AC Introduction SAT Summer School 2016, Lisbon 29
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The Baseline: Graduate Student Descent

Algorithm 1: Manual Greedy Algorithm Configuration

Start with some configuration θ

repeat
Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed first-improvement local search
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Going Beyond Local Optima: Iterated Local Search

(Initialization)

Animation credit: Holger Hoos
Lindauer AC Introduction SAT Summer School 2016, Lisbon 31
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Going Beyond Local Optima: Iterated Local Search

(Perturbation)

Animation credit: Holger Hoos
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Going Beyond Local Optima: Iterated Local Search

?

Selection (using Acceptance Criterion)

Animation credit: Holger Hoos
Lindauer AC Introduction SAT Summer School 2016, Lisbon 31



Going Beyond Local Optima: Iterated Local Search

(Perturbation)

Animation credit: Holger Hoos
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The ParamILS Framework [Hutter et al, 2007 & 2009]

ParamILS = Iterated Local Search in parameter configuration space

 Performs biased random walk over local optima

How to evaluate a configuration’s quality?

BasicILS(N): use N fixed instances

FocusedILS: increase #instances for good configurations over time

Lindauer AC Introduction SAT Summer School 2016, Lisbon 32
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The ParamILS Framework [Hutter et al, 2007 & 2009]

Advantages

Theoretically shown to converge

Often quickly finds local improvements over default
(can exploit a good default)

Very randomized → almost k-fold speedup for k parallel runs

Disadvantages

Very randomized → unreliable when only run once for a short time

Can be slow to find the global optimum

Lindauer AC Introduction SAT Summer School 2016, Lisbon 33
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GGA [Ansotegui et al, 2009]

Genetic algorithm for algorithm configuration

Genes = parameter values

Population: trades of exploration and exploitation

Use N instances to evaluate configurations in each generation

- Increase N in each generation: linearly from Nstart to Nend

Advantages

Easy to use parallel resources: evaluate several population members in
parallel

Disadvantages

User has to specify #generations ahead of time

Not recommended for small budgets and categorical parameters
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Iterated F-race [López-Ibáñez et al, 2011]

Basic Idea

Use F-Race as a building block

Iteratively sample configurations to race

Advantages

Can parallelize easily: runs of each racing iteration are independent

Well-supported software package (for the community that uses R)

Disadvantages

Does not support adaptive capping → Don’t use for runtime

The sampling of new configurations is not very strong for complex
search spaces
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SMAC in a Nutshell [Hutter et al, since 2011]

SMAC = Sequential Model-based Algorithm Configuration

Use a predictive model of algorithm performance to guide the search

Combine this search strategy with aggressive racing & adaptive
capping

One SMAC iteration

Construct a model to predict performance

Use that model to select promising configurations

Compare each of the selected configurations against the best known

- Using a similar procedure as FocusedILS
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Bayesian Optimization – Detour into Machine Learning

General approach

Fit a probabilistic model to the
collected function samples 〈θ, f(θ)〉
Use the model to guide optimization,
trading off exploration vs exploitation

Popular approach in the statistics
literature since [Mockus, 1978]

Efficient in # function evaluations

Works when objective is nonconvex,
noisy, has unknown derivatives, etc

Recent convergence results
[Srinivas et al, 2010; Bull 2011; de Freitas et

al, 2012; Kawaguchi et al, 2015]
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Powering SMAC: Empirical Performance Models

Empirical Performance Models

Given:

Configuration space Θ = Θ1 × · · · ×Θn

For each problem instance πi: fi, a vector of feature values

Observed algorithm runtime data: 〈(θi, fi, yi)〉Ni=1

Find: a mapping m̂ : [θ, f ] 7→ y predicting performance

Which type of regression model?

Rich literature on performance prediction
(overview: [Hutter et al, AIJ 2014])

Here: we use a model m̂ based on random forests
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Instance Features for SAT[Hutter et al, 2014]

Instance Features

Instance features are numerical representations of instances.

What could be instance features for CNFs?

Static Features

Problem size features

Variable-Clause graph
features

Variable graph features

Clause graph features

Balance features

Probing Features

DPLL probing

LP-based Probing

SLS Probing

CDCL Probing

Survey Propagation

Lindauer AC Introduction SAT Summer School 2016, Lisbon 39
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SMAC: Overview

Algorithm 2: SMAC

Initialize with a single run for the default

repeat
Learn a RF model from data so far: m̂ : Θ× I → R

Aggregate over instances: f̂(θ) = Eπ∼D(m̂(θ, π))

Use model f̂ to select promising configurations
Race selected configurations against best known

until time budget exhausted
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Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters

4 Pitfalls and Best Practices

5 Final Remarks
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SMAC, pySMAC, SpySMAC

pySMAC

SpySMAC

SMAC
Algorithm

Configuration
Scenario

SMAC Configurator implemented in JAVA

pySMAC Python Interface to SMAC

SpySMAC SAT-pySMAC: an easy-to-use AC framework for SAT-solvers

Future: One tool in Python.
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SpySMAC [Falkner et al, 2015]

User input SpySMAC run.py SpySMAC analyze.py

Instances

Training

Test

Solver

PCS file

additional
options

default

SMAC 1

...

SMACn

default
performance

configured
performance

combined
run data

fANOVA
parameter
importance

performance
evaluation

scatter plot

CDF plot

cactus plots
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Example: MiniSAT [Een et al, ’03-’07]

MiniSAT (http://minisat.se/) is a SAT solver that is

minimalistic,
open-source,
and developed to help researchers and developers alike to get started
on SAT

MiniSAT has 8 (performance-relevant) parameters

Lindauer AC Introduction SAT Summer School 2016, Lisbon 44
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Hands-on: SpySMAC

Determine optimized configuration

$ python SpySMAC_run.py

-i swv-inst/SWV-GZIP/

-b minisat/core/minisat

-p minisat/pcs.txt

-o minisat-logs

--prefix "-"

-c 2

-B 60

← Call
← Instances
← Binary
← Configuration Space
← log-files
← parameter prefix
← cutoff
← budget [sec]
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Specifying Parameter Configuration Spaces (PCS)

There are many different types of parameter

As for other combinatorial problems, there is a standard
representation that different configuration procedures can read

The simple standard format: PCS

PCS (short for ”parameter configuration space”)

human readable/writable

allows to express a wide range of parameter types
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PCS Example: MiniSAT

rnd-freq [0,1][0]

var-decay [0.001,1][0.95]l

cla-decay [0.001,1][0.999]l

rinc [1.00001,1024][2]l

gc-frac [0,1][0.2]

rfirst [1,10000000][100]il

ccmin-mode {0,1,2}[2]

phase-saving {0,1,2}[2]
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Decision: Configuration Budget and Cutoff

Configuration Budget

Dictated by your resources and needs

E.g., start configuration before leaving work on Friday

The longer the better (but diminishing returns)

Rough rule of thumb: typically at least enough time for 1000 target
runs
But have also achieved good results with 50 target runs in some cases

Maximal cutoff time per target run

Dictated by your needs (typical instance hardness, etc.)

Too high: slow progress

Too low: possible overtuning to easy instances

For SAT etc, often use at least 300 CPU seconds
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Live Demo of a SpySMAC Report
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Outline

1 The Algorithm Configuration Problem

2 Using AC Systems

3 Importance of Parameters
Ablation
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4 Pitfalls and Best Practices
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Parameter Importance

Recommendations & Observation

Configure all parameters that could influence performance

Dependent on the instance set, different parameters matter

How to determine the important parameters?

Example

SAT-solver lingeling has more than 300 parameters

Often, less than 10 are important to optimize performance
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Ablation [Fawcett et al. 2013]

Idea

Starting from the default configuration, we change the value of the
parameters

Which of these changes were important?

→ Ablation compares parameter flips between default and incumbent
configuration

Basic Approach

Iterate over all non-flipped parameters

Flip the parameter with the largest influence on the performance in
each iteration
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Ablation Example: Spear on SWV

Source: [Fawcett et al. 2013]
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fANOVA [Hutter et al. 2014]

Reminder: Empirical Performance Model (EPM)

Using an EPM m̂ : Θ→ R, predict the performance of configurations θ.

fANOVA [Sobol 1993]

Using fANOVA, write performance predictions ŷ as a sum of components:

ŷ(θ1, . . . , θn) = m̂0 +
∑n

i=1 m̂i(θi) +
∑

i 6=j m̂ij(θi, θj) + . . .

With variance decomposition, compute the performance variance explained
by a single parameter (or combinations of them)

Application to Parameter Importance

How much of the variance can be explained by a parameter (or
combinations of parameters) marginalized over all other parameters?

Lindauer AC Introduction SAT Summer School 2016, Lisbon 56
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fANOVA Example

lingeling on circuit fuzz
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fANOVA Example

probSAT on 3-SAT instances
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Comparison Parameter Importance Procedures

Ablation

+ Only method to compare two configurations

- Needs a lot of algorithm runs → slow

fANOVA

+ EPM can be trained by the performance data collected during
configuration

+ Considers the complete configuration space or only “interesting” areas

- Importance of interactions between parameters can be expensive
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Generalization of Performance

The dark ages

1 Student tweaks the parameters manually on 10 problems until it works

2 Supervisor may not even know about the tuning

3 Results get published without acknowledging the tuning

4 Of course, the approach does not generalize

Even better: avoid “peeking” at the test set

Put test set into a vault (i.e., never look at it)

Split training set again into training and validation set

Only use test set in the end to generate results for publication
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The concept of overtuning

Very related to overfitting in machine learning

Performance improves on the training set

Performance does not improve on the test set, and may even degrade

More pronounced for more heterogeneous benchmark sets

But it even happens for very homogeneous sets

Indeed, one can even overfit on a single instance, to the seeds used
for training
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Overtuning Visualized

Example: minimizing SLS solver runlengths for a single SAT instance

Training cost, here based on N=100 runs with different seeds

Test cost of θ̂ here based on 1000 new seeds

Lindauer AC Introduction SAT Summer School 2016, Lisbon 64



Overtuning Visualized

Example: minimizing SLS solver runlengths for a single SAT instance

Training cost, here based on N=100 runs with different seeds

Test cost of θ̂ here based on 1000 new seeds

Lindauer AC Introduction SAT Summer School 2016, Lisbon 64



Overtuning Visualized

Example: minimizing SLS solver runlengths for a single SAT instance

Training cost, here based on N=100 runs with different seeds

Test cost of θ̂ here based on 1000 new seeds

Lindauer AC Introduction SAT Summer School 2016, Lisbon 64



Overtuning is Stronger For Smaller Training Sets

Best Practice

Provide as many instances as possible, and we will take care to run only as
many as necessary.
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General advice: make solver’s randomness explicit

Several communities dislike randomness

Key arguments: reproducibility, tracking down bugs

I agree these are important

But you can achieve them by keeping track of your seeds

In fact: your tests will cover more cases when randomized

It’s much easier to get more seeds than more instances

Performance should generalize to new seeds

Otherwise, it’s less likely to generalize to new instances
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Different Types of Overtuning

One can overtune to various specifics of the training setup

To the specific instances used in the training set

To the specific seeds used in the training set

To the (small) runtime cutoff used during training

To a particular machine type

To the type of instances in the training set

These should just be drawn according to the distribution of interest
But in practice, the distribution might change over time
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Choosing the Training Instances #1

Split instance set into training and test sets

Configure on the training instances → configuration θ̂

Run (only) θ̂ on the test instances → unbiased performance estimate

Pitfall

Configuring on your test instances

→ overtuning effects – no unbiased performance estimate

Fine practice

Do multiple configuration runs and pick the θ̂ with the best training
performance
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Choosing the Training Instances #2

AC works much better on homogeneous instance sets

Instances have something in common

E.g., come from the same problem domain
E.g., use the same encoding

One configuration likely to perform well on all instances

Pitfall

Configuration on too heterogeneous sets (e.g., SAT Competition)

→ There often is no single great overall configuration
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Choosing the Training Instances: Recommendation

Representative instances

Representative of the instances you want to solve later

Moderately hard instances

Too hard: will not solve many instances, no traction

Too easy: will results generalize to harder instances?

Rule of thumb: mix of hardness ranges

Roughly 75% instances solvable by default in maximal cutoff time

Enough instances

The more training instances the better

Very homogeneous instance sets: 50 instances might suffice

Preferably ≥ 300 instances, better even ≥ 1000 instances
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Using parallel computation

Simplest method: use multiple independent configurator runs

This can work very well [Hutter et al, LION 2012]

FocusedILS: basically linear speedups with up to 16 runs

SMAC: about 8-fold speedup with 16 runs

Distributed SMAC (d-SMAC) [Hutter et al, LION 2012]

Up to 50-fold speedups with 64 workers

- But so far synchronous parallelization

- Not applicable for runtime optimization

Parallel SMAC (p-SMAC) [unpublished]

Simple asynchronous scheme

Simply exectue k different SMAC runs with different seeds

Add --shared-model-mode true
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Advanced Topics

Automatic Construction of Parallel Portfolios [Lindauer et al, AIJ 2016]

parallel portfolio of complementary parameter configurations

Robust Benchmark Sets [Hoos et al, LION 2013]

selection of a benchmark set to get a robust parameter
configuration

SpyBug: Automated Bug Detection [Manthey et al, SAT 2016]

search for bugs in the configuration space

Per-Instance Algorithm Selection [Xu et al, AAAI 2010]

selection of a well-performing configuration for an instance
at hand
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Further tips and tricks

Further Tools
see www.ml4aad.org

There is extensive documentation

http://aclib.net/smac

Quickstart guide, FAQ, extensive manual

E.g., resuming SMAC runs, warmstarting with previous runs, etc.

Ask questions in the SMAC Forum

https://groups.google.com/forum/#!forum/smac-forum

It can also help to read through others’ issues and solutions
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Thank you!
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