

Automated Machine Learning (AutoML): A Tutorial

Matthias Feurer

University of Freiburg feurerm@cs.uni-freiburg.de

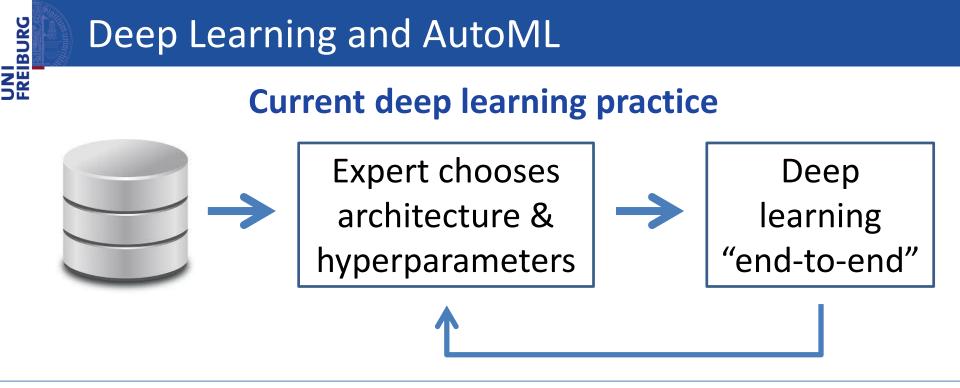
@___mfeurer___

Frank Hutter

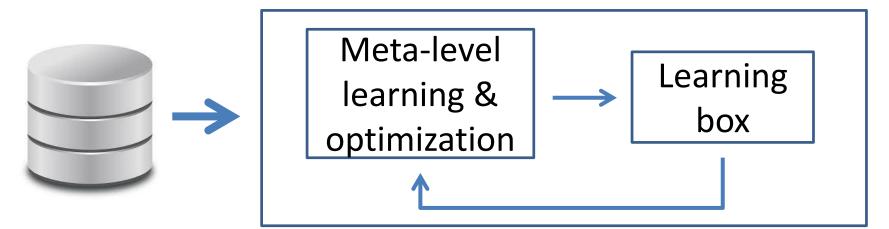
University of Freiburg & Bosch fh@cs.uni-freiburg.de

Tutorial based on Chapters 1-3 of the book <u>Automated Machine Learning</u> Slides and video available at <u>automl.org/events/tutorials</u> (all references are clickable links)

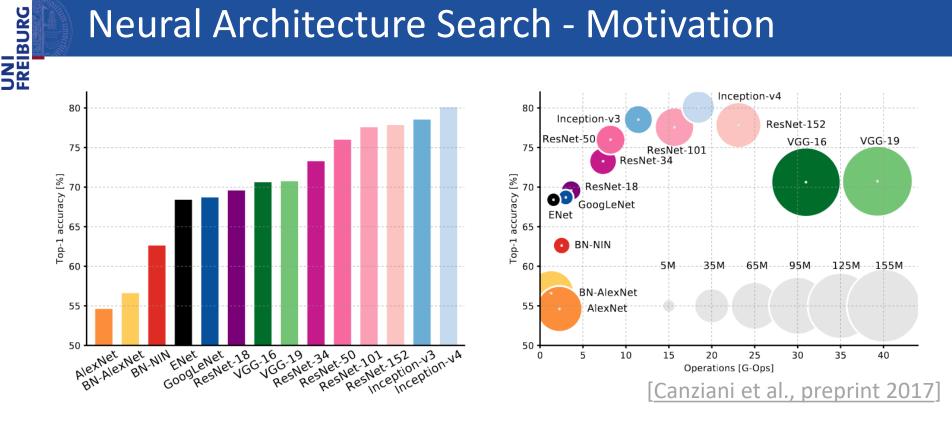
Outline

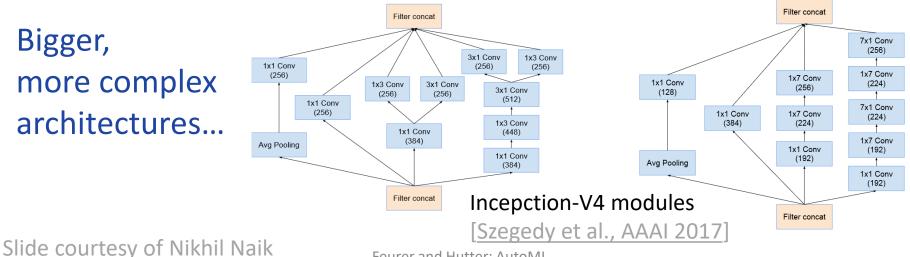

UNI FREIBURG

Part 1: General AutoML (Matthias)


- 1. AutoML by Hyperparameter Optimization
- 2. Black-box Hyperparameter Optimization
- 3. Beyond black-box optimization
- 4. Examples of AutoML
- 5. Wrap-up & Conclusion

Part 2: Neural Architecture Search (Frank)


- 1. Search Spaces
- 2. Black-box Optimization
- 3. Beyond Black-box Optimization
- 4. Best Practices

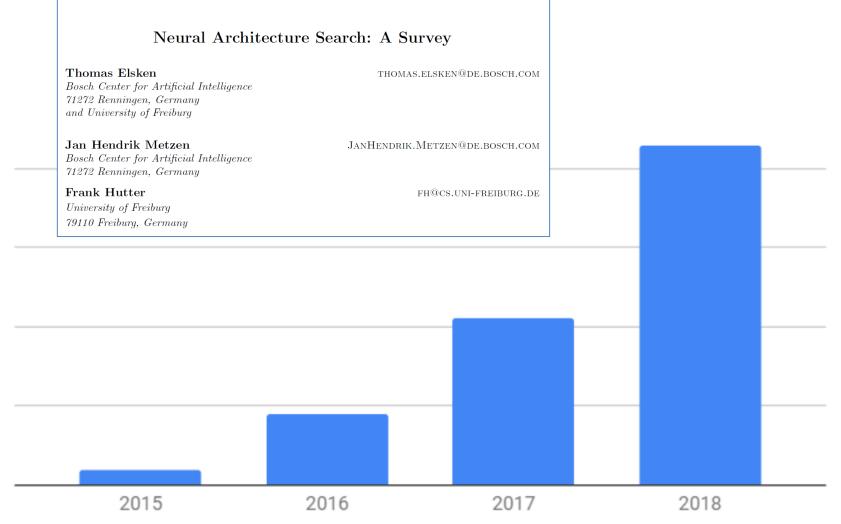


AutoML: true end-to-end learning

Neural Architecture Search - Motivation

Feurer and Hutter: AutoML

Can we automatically design neural network architectures?

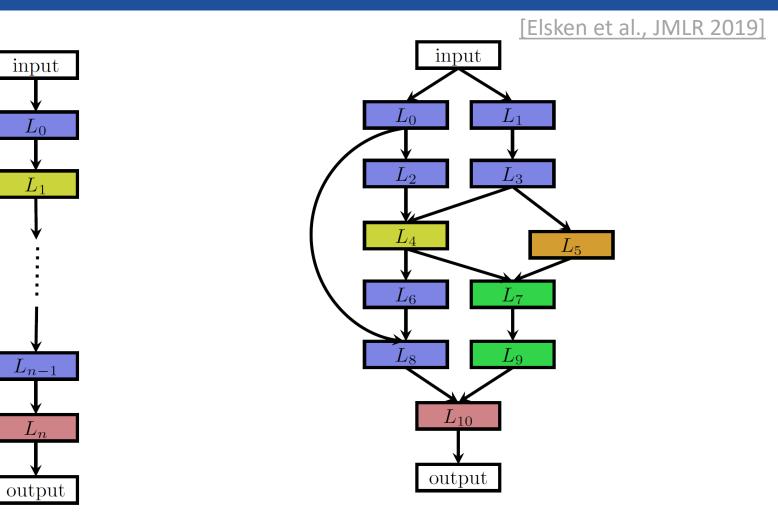


Journal of Machine Learning Research 20 (2019) 1-21

Yes, we can – and NAS has become a hot topic!

Submitted 9/18; Revised 3/19; Published 3/19

Number of NAS papers written


Part 2: Neural Architecture Search

- 1. Search Spaces
 - 2. Black-box Optimization
 - 3. Beyond Black-box Optimization
 - 4. Best Practices

Based on: Elsken, Metzen and Hutter

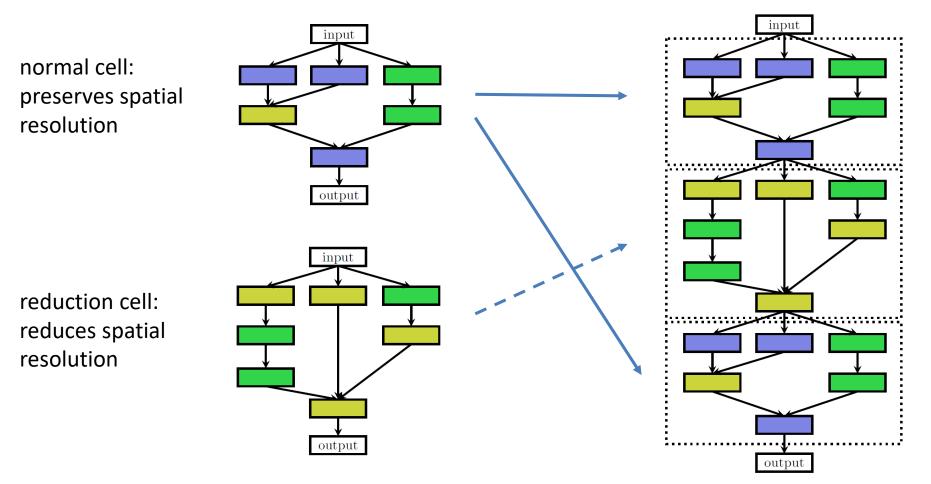
[Neural Architecture Search: a Survey, JMLR 2019; also Chapter 3 of the AutoML book]

Basic Neural Architecture Search Spaces

Chain-structured space (different colours: different layer types)

UNI FREIBURG

> More complex space with multiple branches and skip connections


Cell Search Spaces

UNI FREIBURG

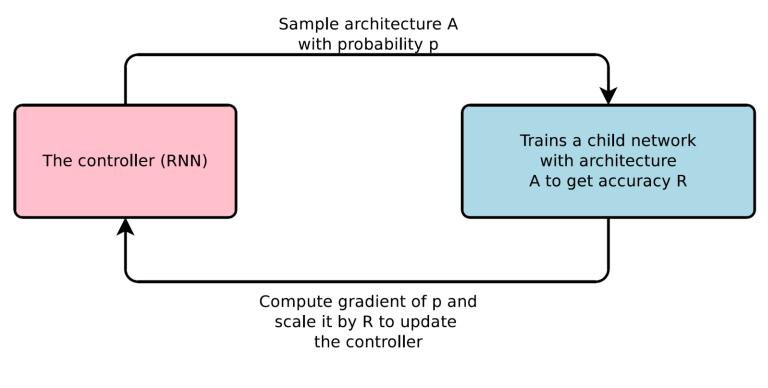
Introduced by Zoph et al. [CVPR 2018]

Two possible cells

Architecture composed of stacking together individual cells

Part 2: Neural Architecture Search

- 1. Search Spaces
- 2. Black-box Optimization
 - 3. Beyond Black-box Optimization
 - 4. Best Practices

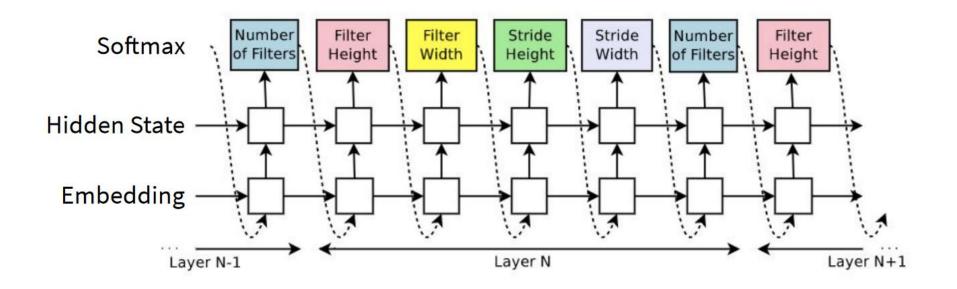

Based on: Elsken, Metzen and Hutter

[Neural Architecture Search: a Survey, JMLR 2019; also Chapter 3 of the AutoML book]

NAS with Reinforcement Learning

- UNI FREIBURG • NAS with Reinforcement Learning [Zoph & Le, ICLR 2017]
 - State-of-the-art results for CIFAR-10, Penn Treebank
 - Large computational demands:

800 GPUs for 3-4 weeks, 12.800 architectures trained



NAS with Reinforcement Learning

UNI FREIBURG

[Zoph & Le, ICLR 2017]

- Architecture of neural network represented as string e.g., ["filter height: 5", "filter width: 3", "# of filters: 24"]
- Controller (RNN) generates string that represents architecture



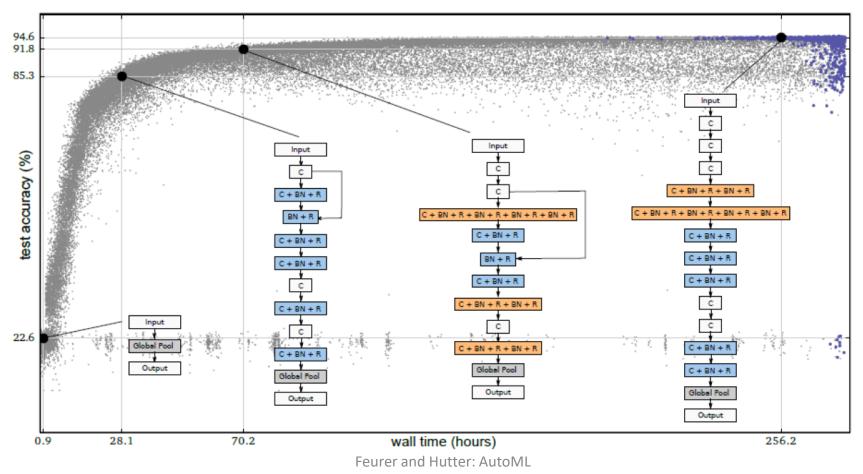
NAS as Hyperparameter Optimization

UNI FREIBURG

[Zoph & Le, ICLR 2017]

- Architecture of neural network represented as string
 e.g., ["filter height: 5", "filter width: 3", "# of filters: 24"]
- We can simply treat these as categorical parameters
 - E.g., 25 cat. parameters for each of the 2 cells in Zoph et al [CVPR 2018]

NAS with Evolution

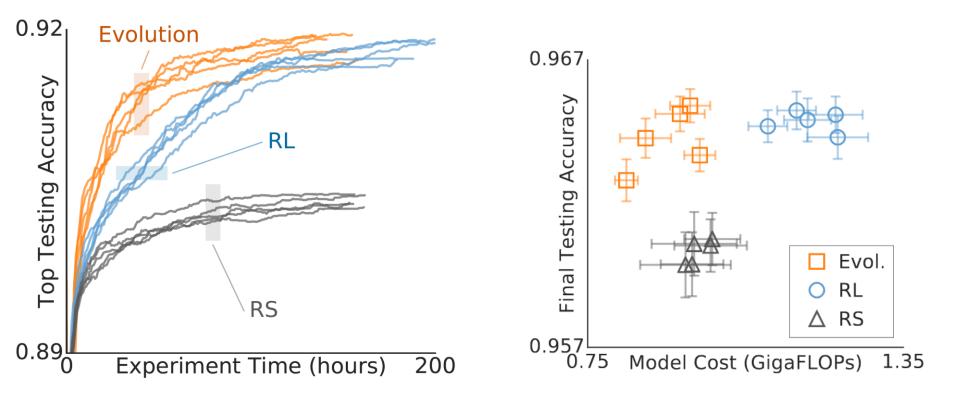

Neuroevolution

UNI FREIBURG

(already since the 1990s [Angeline et al., 1994; Stanley and Miikkulainen, 2002])

- Mutation steps, such as adding, changing or removing a layer

[Real et al., ICML 2017; Miikkulainen et al., arXiv 2017]



RL vs. Evolution vs. Random Search

during architecture search

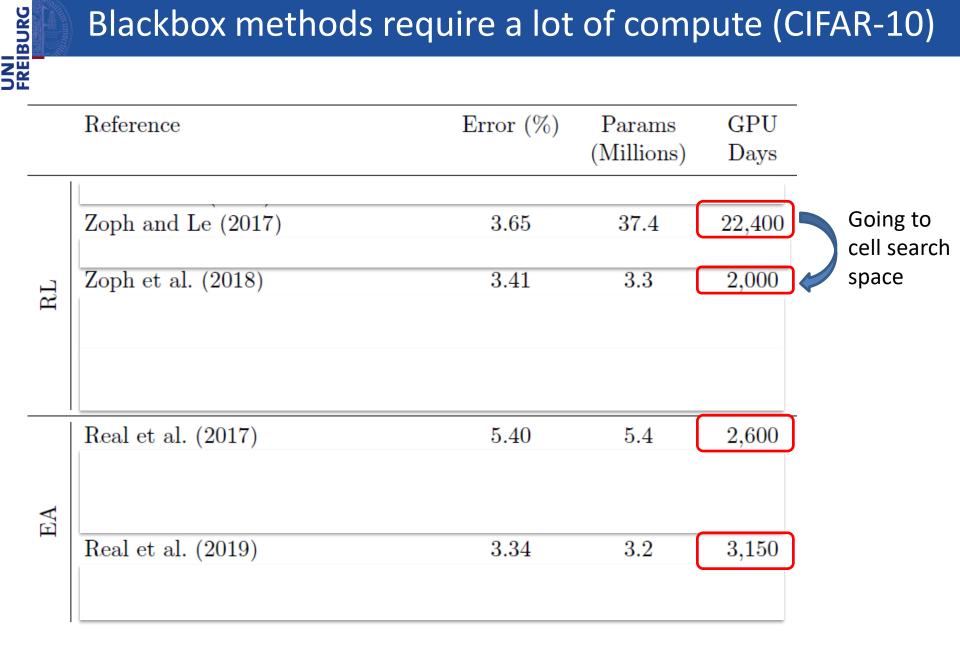
UNI FREIBURG

final evaluation

[Real et al., AAAI 2019]

 Joint optimization of a vision architecture with 238 hyperparameters with TPE [Bergstra et al, ICML 2013]

• Auto-Net


UNI FREIBURG

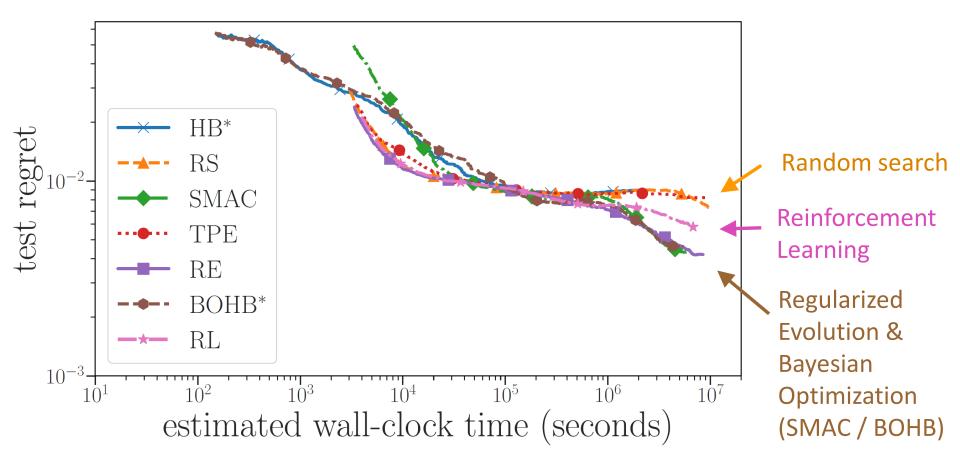
- Joint architecture and hyperparameter search with SMAC
- First Auto-DL system to win a competition dataset against human experts [Mendoza et al, AutoML 2016]

Kernels for GP-based NAS

- Arc kernel [Swersky et al, BayesOpt 2013]
- NASBOT [Kandasamy et al, NIPS 2018]
- Sequential model-based optimization
 - PNAS [Liu et al, ECCV 2018]

Blackbox methods require a lot of compute (CIFAR-10)

[Wistuba et al., preprint 2019]



Democratizing NAS Research: NAS-Bench-101

[Ying et al., ICML 2019]

- Table with exhaustive evaluations of a small search space
 - Enables evaluating a NAS method in minutes on a laptop
 - Enables proper scientific research: multiple runs, robustness studies, etc
 - Fair head-to-head evaluations by design (fixed final evaluation pipeline & hyperparameters)
 - Of course, source code and scripts are available
- 423k cell architectures evaluated on CIFAR-10
 - Only possible with Google resources (4.000 TPUs for months)
 - One-time cost already far more than amortized

NAS-Bench-101: Comparison of Optimizers

Still, blackbox optimization is expensive! Can we do better?

Part 2: Neural Architecture Search

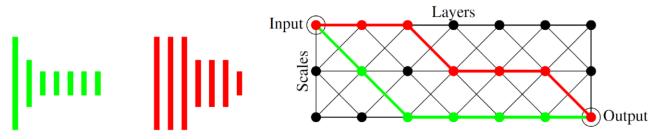
- 1. Search Spaces
- 2. Black-box Optimization
- 3. Beyond Black-box Optimization
 - 4. Best Practices

Based on: Elsken, Metzen and Hutter

[Neural Architecture Search: a Survey, JMLR 2019; also Chapter 3 of the AutoML book]

Main approaches for making NAS efficient

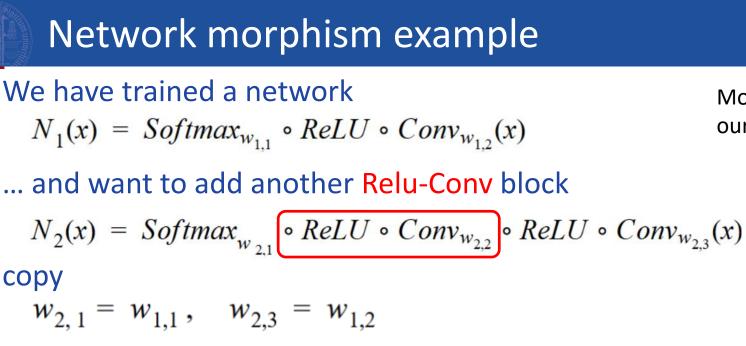
Multi-fidelity optimization


UNI FREIBURG

[Zela et al, AutoML 2018, Runge et al, MetaLearn 2018]

- Meta-learning [Wong et al, NeurIPS 2018]
- Weight inheritance & network morphisms

Weight sharing & one-shot models



Weight inheritance & network morphisms

- UNI FREIBURG • Network morphisms [Chen et al., 2016; Wei et al., 2016]
 - Change the network structure, but not the modelled function (i.e., for every input, the network yields the same output as before applying the network morphism)

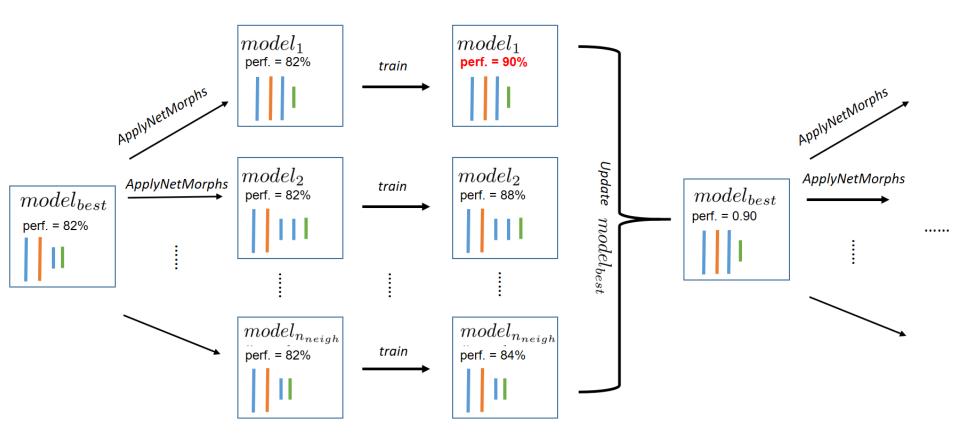
- Can use this in NAS algorithms as operations to generate new networks
- Avoids costly training from scratch

and set $w_{2,2}$ so that $Conv_{w_{2,2}}(x) = x$

Then:

UNI FREIBURG

$$\begin{split} N_{2}(x) &= Softmax_{w_{2,1}} \circ ReLU \circ Conv_{w_{2,2}} \circ ReLU \circ Conv_{w_{2,3}}(x) \\ &= Softmax_{w_{1,1}} \circ ReLU \circ Conv_{w_{2,2}} \circ ReLU \circ Conv_{w_{1,2}}(x) \quad \text{// copy weights} \\ &= Softmax_{w_{1,1}} \circ ReLU \circ Id \circ ReLU \circ Conv_{w_{1,2}}(x) \quad \text{// chose } w_{2,2} \text{ to be Id} \\ &= Softmax_{w_{1,1}} \circ ReLU \circ Conv_{w_{1,2}}(x) \quad \text{// ReLU is idempotent} \\ &= N_{1}(x) \end{split}$$

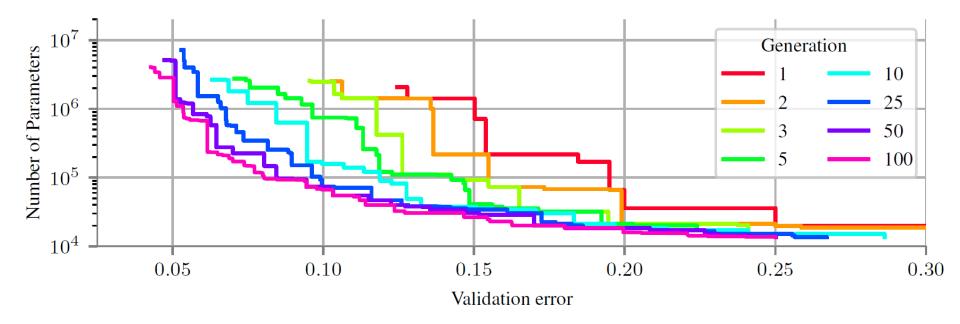

More details in

our blog post.

Weight inheritance & network morphisms in NAS

UNI FREIBURG

[Cai et al, AAAI 2018; Elsken et al, NeurIPS MetaLearn 2017; Cortes et al, ICML 2017; Cai et al, ICML 2018; Elsken et al, ICLR 2019]



 \rightarrow enables efficient architecture search

Feurer and Hutter: AutoML

Designing Efficient Architectures

- UNI FREIBURG Multi-objective NAS: LEMONADE [Elsken et al., ICLR 2019, blog post]
 - Multi-objective evolutionary method
 - Objectives such as accuracy, # parameters, # flops, latency
 - Outputs Pareto-front wrt. multiple objectives
 - No need to specify tradeoff between objectives a-priori

Some numbers (CIFAR-10)

	Reference	Error (%)	Params (Millions)	GPU Days	
	Baker et al. (2017)	6.92	11.18	100	
	Zoph and Le (2017)	3.65	37.4	22,400	
	Cai et al. (2018a)	4.23	23.4	10	
RL	Zoph et al. (2018)	3.41	3.3	2,000	
	Zoph et al. (2018) + Cutout	2.65	3.3	2,000	
	Zhong et al. (2018)	3.54	39.8	96	
	Cai et al. (2018b)	2.99	5.7	200	NAS with
	Cai et al. $(2018b)$ + Cutout	2.49	5.7	200	weight inher. /
	Real et al. (2017)	5.40	5.4	2,600	network morphisms
	Xie and Yuille (2017)	5.39	N/A	17	Ποιρπισπο
	Suganuma et al. (2017)	5.98	1.7	14.9	
EA	Liu et al. (2018b)	3.75	15.7	300	
	Real et al. (2019)	3.34	3.2	$3,\!150$	
	Elsken et al. (2018)	5.2	19.7	1	
	Wistuba $(2018a)$ + Cutout	3.57	5.8	0.5	

[Wistuba et al., preprint 2019]

Weight Sharing & One-shot Models

- Embed architectures from search space into single network, the *"one-shot model"*
- Each path through the one-shot model is an architecture
- Only need a single training of the one-shot model
- Weights are shared across architectures embedded in one-shot model

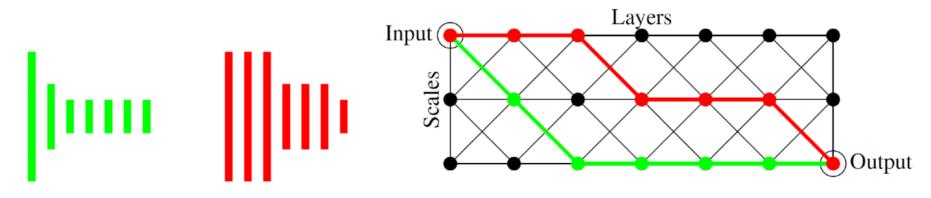
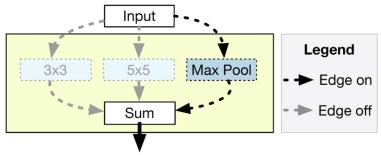


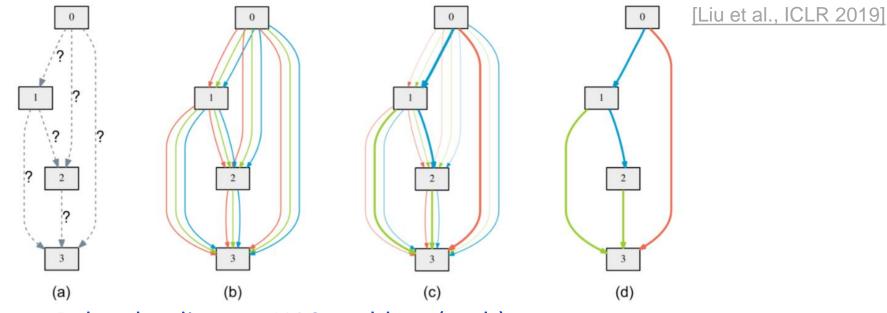
Figure: embeddings of two 7-layer CNNs (red, green) [Saxena & Verbeek, NeurIPS 2016]


- Problems/ limitations:
 - Search space restricted to one-shot model
 - One-shot model needs to be kept in GPU-memory
 - Search bias?

Weight Sharing & One-shot Models

• Simplifying One-Shot Architecture Search [Bender et al., ICML 2018]

 Use path dropout to make sure the individual models perform well by themselves


UNI FREIBURG

- ENAS [Pham et al., ICML 2018]
 - Use RL to sample paths (=architectures) from one-shot model
- SMASH [Brock et al., MetaLearn 2017]

Train hypernetwork that generates weights of models

DARTS: Differentiable Architecture Search

• Relax the discrete NAS problem (a->b)

UNI FREIBURG

- One-shot model with continuous architecture weight α for each operator

- Mixed operator:
$$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$


• Solve a bi-level optimization problem (c)

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$

s.t. $w^*(\alpha) = \operatorname{argmin}_w \quad \mathcal{L}_{train}(w, \alpha)$

• In the end, discretize to obtain a single architecture (d)

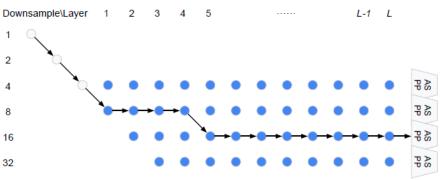
DARTS: Differentiable Architecture Search

- DARTS:
 - By alternating SGD steps for α and w runtime only a bit higher than SGD for w alone
 - Very brittle optimization:
 - Requires hyperparameter tuning for new problems
 - Discretization in step (d) can deteriorate performance a lot

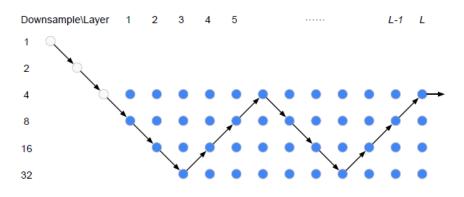
- One-shot model needs to fit into GPU memory
- Already lots of follow-up work to solve these problems [Xie et al., ICLR 2019, Cai et al., ICLR 2019, Dong et al., CVPR 2019, Zela et al, arXiv 2019]

Some numbers (CIFAR-10)

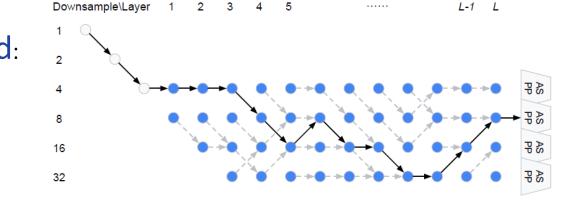
Reference	Error (%)	Params (Millions)	GPU Days
Zoph and Le (2017)	3.65	37.4	22,400
Cai et al. (2018a)	4.23	23.4	10
Zoph et al. (2018)	3.41	3.3	2,000
Zoph et al. (2018) + Cutout	2.65	3.3	2,000
Cai et al. (2018b)	2.99	5.7	200
Cai et al. $(2018b)$ + Cutout	2.49	5.7	200
Real et al. (2017)	5.40	5.4	2,600
Liu et al. (2018b)	3.75	15.7	300
Real et al. (2019)	3.34	3.2	3,150
Elsken et al. (2018)	5.2	19.7	1
Wistuba $(2018a)$ + Cutout	3.57	5.8	0.5
Pham et al. (2018)	3.54	4.6	0.5
Pham et al. (2018) + Cutout	2.89	4.6	0.5
Bender et al. (2018)	4.00	5.0	N/A
Casale et al. (2019) + Cutout	2.81	3.7	1
Liu et al. $(2019b)$ + Cutout	2.76	3.3	4
Xie et al. $(2019b)$ + Cutout	2.85	2.8	1.5
Cai et al. (2019) + Cutout	2.08	5.7	8.33
Brock et al. (2018)	4.03	16.0	3
Zhang et al. (2019)	2.84	5.7	0.84
Liu et al. (2018b)	3.91	N/A	300
Luo et al. (2018)	3.92	3.9	0.3
Liu et al. $(2019b)$ + Cutout	3.29	3.2	4
Li and Talwalkar (2019) + Cutout	2.85	4.3	2.7
	Zoph and Le (2017) Cai et al. (2018a) Zoph et al. (2018) Zoph et al. (2018) + Cutout Cai et al. (2018b) + Cutout Cai et al. (2018b) + Cutout Real et al. (2018b) + Cutout Real et al. (2017) Liu et al. (2018b) Real et al. (2019) Elsken et al. (2019) Elsken et al. (2018) Wistuba (2018a) + Cutout Pham et al. (2018) Pham et al. (2018) + Cutout Bender et al. (2018) Casale et al. (2019) + Cutout Liu et al. (2019b) + Cutout Xie et al. (2019b) + Cutout Cai et al. (2019b) + Cutout Brock et al. (2019) Liu et al. (2018b) Luo et al. (2018b) Luo et al. (2019b) + Cutout	Zoph and Le (2017) 3.65 Cai et al. (2018a) 4.23 Zoph et al. (2018) 3.41 Zoph et al. (2018) + Cutout 2.65 Cai et al. (2018b) 2.99 Cai et al. (2018b) + Cutout 2.49 Real et al. (2017) 5.40 Liu et al. (2018b) 3.75 Real et al. (2019) 3.34 Elsken et al. (2019) 5.2 Wistuba (2018a) + Cutout 3.57 Pham et al. (2018) 5.2 Wistuba (2018a) + Cutout 2.89 Bender et al. (2018) 4.00 Casale et al. (2019) + Cutout 2.81 Liu et al. (2019b) + Cutout 2.85 Cai et al. (2019b) + Cutout 2.85 Cai et al. (2019) + Cutout 2.85 Cai et al. (2019) + Cutout 2.84 Liu et al. (2018) 4.03 Zhang et al. (2018) 3.91 Luo et al. (2018) 3.92 Liu et al. (2019b) + Cutout 3.29	(Millions) Zoph and Le (2017) 3.65 37.4 Cai et al. (2018a) 4.23 23.4 Zoph et al. (2018) 3.41 3.3 Zoph et al. (2018) + Cutout 2.65 3.3 Cai et al. (2018b) 2.99 5.7 Cai et al. (2018b) + Cutout 2.49 5.7 Real et al. (2017) 5.40 5.4 Liu et al. (2018b) 3.75 15.7 Real et al. (2018b) 3.75 15.7 Real et al. (2018) 5.2 19.7 Wistuba (2018a) + Cutout 3.57 5.8 Pham et al. (2018) 4.6 Pham et al. (2018) 4.6 Bender et al. (2018) 4.00 5.0 Casale et al. (2019) + Cutout 2.81 3.7 Liu et al. (2019b) + Cutout 2.85 2.8 Cai et al. (2019b) + Cutout 2.85 2.8 Cai et al. (2019b) + Cutout 2.85 2.8 Cai et al. (2019) + Cutout 2.85 5.7 Brock et al. (2018) 4.03 16.0 Zhang et al. (2018) 3.91 N/A Luo et al. (2018) 3.92 3.9 Liu et al. (2019b) + Cutout 3.29 3.2



Application of DARTS: Semantic Segmentation

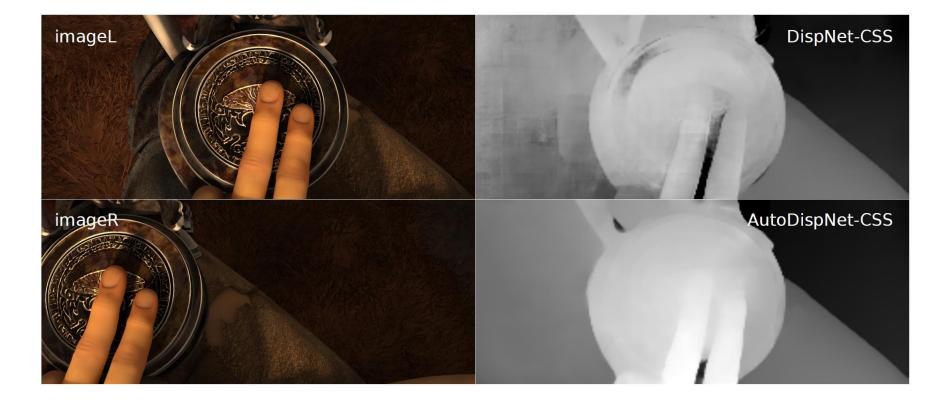


Application of DARTS: Semantic Segmentation


- UNI FREIBURG • Auto-DeepLab [Liu et al., CVPR 2019]
 - Also optimize downsampling factor for each layer
 - 3 GPU days search on Cityscapes
 - Based on DARTS

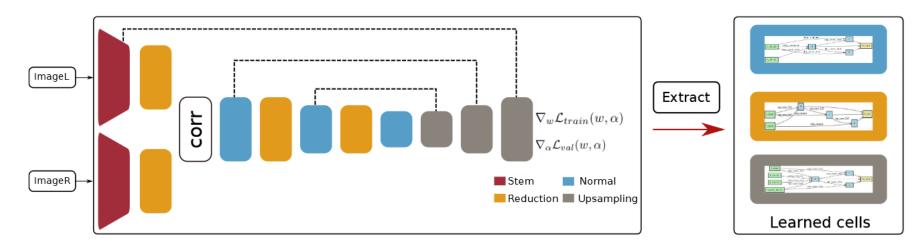
(a) Network level architecture used in DeepLabv3 [9].

(c) Network level architecture used in Stacked Hourglass [55].


Optimized:

(3 GPU days search on Cityscapes)

Feurer and Hutter: AutoML



Application of DARTS: Disparity Estimation

Application of DARTS: Disparity Estimation

- UNI FREIBURG • AutoDispNet [Saikia et al., ICCV 2019]
 - Introduce upsampling cells in addition to normal and reduction cells to allow for encoder-decoder architectures
 - Supports U-Net like encoder-decoder architectures

- NAS with DARTS, then HPO with BOHB
- Better performance than human domain experts
 - E.g., EPE on Sintel: 2.36 -> 2.14 (NAS) -> 1.94 (NAS+HPO)

Part 2: Neural Architecture Search

- 1. Search Spaces
- 2. Black-box Optimization
- 3. Beyond Black-box Optimization
- 4. Best Practices

• Reproducibility

- Many ML methods are not very reproducible
- NAS research is particularly hard to reproduce
- Fair comparisons of NAS methods
 - Using the same NAS Benchmarks
 - Definition: NAS Benchmark
 - Dataset (with predefined train/test split)
 - Search space
 - Available code with fixed hyperparameters for training final architecture
- Reporting important details
 - Hyperparameter optimization can drastically improve results

FREIBURG

A False Friend: The Final Results Table for CIFAR-10

Reference	e	Error (%)	Params (Millions)	GPU Days
Baker et	al. (2017)	6.92	11.18	100
	d Le (2017)	3.65	37.4	22,400
	l. (2018a)	4.23	23.4	10
Zoph at	al. (2018)	3.41	3.3	2,000
	al. (2018) + Cutout	2.65	3.3	2,000
	t al. (2018)	3.54	39.8	96
Cai et a	l. (2018b)	2.99	5.7	200
	1.(2018b) + Cutout	2.49	5.7	200
Real et a	al. (2017)	5.40	5.4	$2,\!600$
Xie and	Yuille (2017)	5.39	N/A	17
	na et al. (2017)	5.98	1.7	14.9
돛 Liu et al	. (2018b)	3.75	15.7	300
Real et a	al. (2019)	3.34	3.2	3,150
	t al. (2018)	5.2	19.7	1
Wistuba	(2018a) + Cutout	3.57	5.8	0.5
o Kandasa	amy et al. (2018)	8.69	N/A	1.7
	. (2018a)	3.41	3.2	225
ፚ Luo et a	l. (2018)	3.18	10.6	200
	al. (2018)	3.54	4.6	0.5
	al. $(2018) + Cutout$	2.89	4.6	0.5
Bender o	et al. (2018)	4.00	5.0	N/A
	t al. $(2019) + Cutout$	2.81	3.7	1
\mathcal{L}_{Φ} Liu et al	(2019b) + Cutout	2.76	3.3	4
5 Xie et al	1. (2019b) + Cutout	2.85	2.8	1.5
	1.(2019) + Cutout	2.08	5.7	8.33
	al. (2018)	4.03	16.0	3
Zhang e	t al. (2019)	2.84	5.7	0.84
g Liu et al	. (2018b)	3.91	N/A	300
-g Luo et a	l. (2018)	3.92	3.9	0.3
	(2019b) + Cutout	3.29	3.2	4
	Calwalkar (2019) + Cutout	2.85	4.3	2.7
	ko and Komodakis (2016)	3.87	36.2	-
Gastaldi	(2017) (26 2x32d)	3.55	2.9	-
	(2017) (26 2x96d)	2.86	26.2	-
	(2017) (26 2x112d)	2.82	35.6	-
Yamada	et al. (2016) + ShakeDrop	2.67	26.2	-

- Different code for training networks (often unavailable)
 - Performance hugely affected by cutout,
 Auto-Augment, mixup,
 scheduled drop-path,
 cosine annealing, etc
- Different search spaces
- Different evaluation schemes
- No repeated runs

The NAS Best Practices Checklist (version 1.0, September 6, 2019)

by Marius Lindauer and Frank Hutter

UNI FREIBURG

Best practices for releasing code

For all experiments you report, check if you released:

- □ Code for the training pipeline used to evaluate the final architectures
- \Box Code for the search space
- □ The hyperparameters used for the final evaluation pipeline, as well as random seeds
- \Box Code for your NAS method
- ☐ Hyperparameters for your NAS method, as well as random seeds

Note that the easiest way to satisfy the first three of these is to use *existing* NAS benchmarks, rather than changing them or introducing new ones.

Best practices for comparing NAS methods

- □ For all NAS methods you compare, did you use exactly the same NAS benchmark, including the same *dataset* (with the same training-test split), *search space* and *code* for training the architectures and *hyperparameters* for that code?
- □ Did you control for confounding factors (different hardware, versions of DL libraries, different runtimes for the different methods)?
- \Box Did you run ablation studies?
- □ Did you use the same evaluation protocol for the methods being compared?
- □ Did you compare performance over time?
- \Box Did you compare to random search?
- □ Did you perform multiple runs of your experiments and report seeds?
- □ Did you use tabular or surrogate benchmarks for in-depth evaluations?

Best practices for reporting important details

- □ Did you report how you tuned hyperparameters, and what time and resources this required?
- □ Did you report the time for the entire end-to-end NAS method (rather than, e.g., only for the search phase)?
- □ Did you report all the details of your experimental setup?

• Need for more good NAS Benchmarks

- Only experiments on the same benchmarks are comparable
- Have we overfit on CIFAR-10 and PTB?
- By now, lots of non-standard applications of NAS, e.g., semantic segmentation, disparity estimation, reinforcement learning, machine translation, GANs, image restoration, etc.
- Need for an open-source library of NAS methods
 - To avoid confounding factors & understand the true causes of good and bad performance on a NAS benchmark
 - To be able to mix & match components of different algorithms
 - We're developing NASlib and Auto-PyTorch

Part 2: Neural Architecture Search

- 1. Search Spaces
- 2. Black-box Optimization
- 3. Beyond Black-box Optimization
- 4. Best Practices
- NAS is key for new application areas of deep learning
- By now, NAS is a topic all of academia can partake in
- NAS & HPO are both important for strong performance

Thank you for your attention!

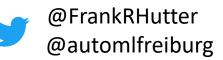
Funding sources

UNI FREIBURG

> European Research Council

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung DFG Priority Programme 1527



My fantastic team

I'm looking for additional great postdocs!

Feurer and Hutter: AutoML