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AutoML A-Z
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AutoML A-Z
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Hyperparameter Optimization
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Hyperparameter Optimization

Optimize for
● Accuracy (& co)
● Memory consumption
● Energy consumption
● Inference time
● Training time
● Fairness
● Robustness
● Uncertainty 

quantification
● …
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HPO → AutoML → AutoDS

Data Engineering Data 
Preprocessing

Model 
Selection MonitoringDeployment

Focus of AutoML

HPO

⇒ AutoDS 
by Luc de Raedt
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Optimizers for HPO
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Optimizers for HPO

Further alternatives:
● Grid search
● Random search
● Reinforcement 

Learning
● Planning

⇒ H2O 
by Erin LeDell
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Speeding Up
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Speeding Up

Observed Predicted

#Epochs
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HPO Packages 

last update of table in 2021
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Neural Architecture Search (NAS)
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Neural Architecture Search (NAS)
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The Components of NAS

Search Space Search 
Strategy

Performance 
Estimation 

Strategy

Architecture

Performance Estimate
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Search Space 1: Macro NAS

Source: [Tan & Le. 2019]→ direct relationship to HPO: NAS as HPO

https://arxiv.org/pdf/1905.11946.pdf
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Search Space 2: Cell-based NAS

Source: [Liu et al. 2019]

https://arxiv.org/pdf/1806.09055.pdf
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Search Space 3: Hierarchical NAS

Search on multiple levels of the hierarchy
● Lower levels: create reusable building blocks 
● Higher levels: combine building blocks 

Like transformers are composed of lower-level building blocks (e.g., attention)

Source: [Liu et al, 2018]

https://openreview.net/forum?id=BJQRKzbA-
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Oneshot NAS: Weight Sharing Across Architectures

● For each choice between operations, the supernet includes all of them

● A linear number of weights shared by an exponential number of architectures

● Thus, updating the weights of one architecture simultaneously updates parts of 
the weights of exponentially many other architectures
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Zero-Cost Proxies for NAS

Very hot topic in NAS, but no consistent improvements 
over trivial baselines, such as #parameters or FLOPs

⇒ NAS 
by Colin White

⇒ NASlib 
by Rhea and Arjun

ZC proxy
(a few seconds) Score
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AutoDL: Joint NAS & HPO

1. DL also includes complex pipelines 

2. NAS & HPO need to go hand in hand

JAHS: Joint Architecture & Hyperparameter Search

Inspired by [Zimmer et al. 2021]

AutoML Optimizer

Evaluation Scheme

Imputation

Normalization

Encoding

Resampling

Architecture

DL Optimizer

Loss

https://arxiv.org/abs/2006.13799
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Meta-Learning
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Meta-Learning
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Learning about Learning Algorithms

Hyperparameter 
importance

Learning NN weight 
initializations

Source: [Finn et al, 2017]

Performance 
prediction

Log(#Layers)

Va
lid

at
io

n 
Lo

ss

Source: [Moosbauer et al. 2021]

– ground truth
– estimate

https://arxiv.org/abs/1703.03400
https://arxiv.org/pdf/2111.04820.pdf
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Learning to learn

E.g., “Learning to learn by gradient descent by gradient descent“ [Chen et al. 2016]

E.g., Alpha-Zero [Silver et al. 2017]

Source: [Chen et al. 2016]

https://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1606.04474
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Learning to solve small tabular classification tasks

Learn a probabilistic classifier that accepts input
                               and outputs 

TabPFN [Müller et al, 2022]

● Pretrain on millions 
of synthetic tabular datasets

● On a real dataset, simply 
apply a forward pass

SOTA predictions in < 1 second
Limitations: ≤ 1000 training data points, 100 features, 10 classes

TabPFN Auto-sklearn 2.0

AutoGluon other 
base 
learners

https://arxiv.org/abs/2207.01848
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Dynamic AutoML

Dynamic Optimizer ML Training

Hyperparameter 
Configuration

State Information
& Loss

● Population-based Training 
[Jaderberg et al. 2017]

● Population-based Bandits
[Parker-Holder et al. 2020]

● Dynamic Algorithm 
Configuration via RL
[Biedenkapp et al. 2020,
Adriaensen et al. 2022]

⇒ Dynamic Selection & 
Configuration 

by Carola Doerr

https://arxiv.org/abs/1711.09846
https://arxiv.org/abs/2002.02518
https://ml.informatik.uni-freiburg.de/wp-content/uploads/papers/20-ECAI-DAC.pdf
https://arxiv.org/abs/2205.13881
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Final Step of AutoML
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Ensembling vs Stacking

Input

Model 1 Model 2 … Model n

Prediction

w1
w2

wn

Input

Model 1 Model 2 … Model n

Prediction

w1
w2

wn

Concat

Model 1 Model 2 … Model n

Source [Erickson et al. 2020]

⇒ Auto-Gluon 
by Nick Erickson

https://arxiv.org/pdf/2003.06505.pdf
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Auto-Sklearn [Feurer et al. 2015, Feurer et al. 2022] &
Auto-PyTorch [Zimmer et al. 2021]

Training & 
Validation

Multi-fidelity
Optimizer

Configuration
Validation Loss

Configuration 
Space

Warmstarting 
& Strategy

Robust 
Portfolio

Meta Training 
Datasets

Dataset Ensembling of 
Models

⇒ Auto-Sklearn 
by Matthias, Katharina, 

Eddie

https://ml.informatik.uni-freiburg.de/wp-content/uploads/papers/15-NIPS-auto-sklearn-preprint.pdf
https://www.jmlr.org/papers/v23/21-0992.html
https://ieeexplore.ieee.org/document/9382913
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AutoML-Ops

Design the 
configuration space

Monitor AutoML

Determine your 
objectives, metrics 

and constraints

Choose your 
AutoML-Approach

Determine Budgets

Running AutoML
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Meta-Data & 
Reproducibility

Trajectory of 
AutoML

Importance of 
HyperparametersPerformance

Monitoring AutoML [Sass et al. 2022]

Deep
CAVE

https://arxiv.org/abs/2206.03493
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Selection of Open Challenges

Scaling up AutoML 
for very large models

Finding substantially 
novel architectures

Green AutoML

AutoML

Human-centered AutoML

⇒ Expert Priors 
by Luigi Nardi
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Maturity of AutoML ML

Supervised
Learning

Reinforcement 
Learning

Recommender 
System

Unsupervised
Learning

⇒ AutoRL 
by Aleksandra Faust

⇒ AutoML & 
Recommender Systems 

by Joeran Beel
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Have Fun with the AutoML Fall School 2022!



35Marius Lindauer, Frank Hutter

Backup slides
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Portfolios for Warmstarting [Feurer et al. 2022] 

Algorithms

D
at

as
et

s
Best Portfolio

|P| = 1
Best Portfolio

|P| = 2
Best Portfolio

|P| = 3Ground Truth

P
er

fo
rm

an
ce

https://www.jmlr.org/papers/v23/21-0992.html
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Zero-Cost Proxies for NAS

ZC proxies are a particular type of performance predictor
● They aim to judge the performance of an architecture in a few seconds
● Often by a single forward pass on a mini-batch
● Thus, the term “zero-cost”

Examples
● Change of error when dropping network weights
● Dissimilarity of activation patterns for points in a batch 

Very hot topic in NAS, but no consistent improvements 
over using number of parameters or FLOPS


