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Questions?

Let's use sli.do.
Please use “Day 27!
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Story Line Today

e \What do we optimize?
o Parameters vs. Hyperparameters
o Challenges for AutoML
e How do we optimize it?
o Grid Search
o Random Search
e How do we optimize it efficiently?
o Bayesian Optimization
e How do we optimize it even more?
o  Multi-Fidelity Optimization using Hyperband

AUOL org

Note: This lecture is based on the free online lecture “Automated Machine

o) MUltI-ObjeCtIVG Optlmlzatlon USIﬂg ParEGO Lear:ing" atBr;t;QicsS:/g?ilrggi-camous.orq/courses/automl—luh2021
. Bayesian Optimization for HPO
. . Speedup Techniques for Hyperparameter Optimiziation
o De m O . S MAC . Multi-criteria Optimization
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What do we optlmlze’P

algorithm and data, what should I do?



Sequential Experimentation
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Hyperparameter Optimization

Goal: Find the best performing
configuration:

A* € argmin f (A)) A
AEA
—

S
= target
algorithm A

optimizer (_

f(A, )
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Example

e Given a dataset, we want to train a neural network

e We need to choose a learning rate and
architecture

e The “learner” takes the input data, and returns a
fitted network

—We are interested in generalization error!
— We need to look at how our trained model performs

on “unseen” data
— We evaluate different settings and select the one that
performs best w.r.t generalization error.
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Hyperparameters and Parameters

Model parameters can be optimized during training and are the output of the
training. Examples:

e Splits of a Decision Tree
e \Weights of a Neural Network
e Coefficients of a linear model

Hyperparameters need to be set manually before training. They control the
flexibility, structure and complexity of the model and training procedure. Examples:

e Max. depth of a Decision Tree
e Number of layers of a Neural Network
e K for K-Nearest Neighbours
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Types of Hyperparameters

Real-valued -\

e Learning rate for SGD to train NNs

e Bandwidth of kernel density estimates in Naive Bayes > Can also be on a

Integer log-scale

e #Neurons in a layer of a NN
e maximum depth of a Decision Tree _/

Categorical

e Training Algorithm for NNs
e Split criterion for Decision Trees

+ Hyperparameters can be hierarchically dependent on each other
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Why is Hyperparameter Optimization Challenging?

Goal: Find the best performing complex search space No gradients
configuration: No prior knowledge

optimizer algorithm A

noisy
f(A)\n) expensive-to-evaluate
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How do we optimize it?

>> Here's my algorithm, data, metric and search space, what should I do?
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Black-Box Optimization Problem

f(A, )
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Option 1: Grid Search

Popular technique: Evaluates all
combinations on a pre-defined
A multi-dimensional grid

..........

. e o o o o o

...........
TestAccuracy

..........

)\n)
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Option 1: Grid Search |l

Advantages

e \ery easy to implement
e \ery easy to parallelize
e Can handle all types of hyperparameters

IR o v ke I °°°°° Disadvantages
.......... e Scales badly with #dimensions
DEENMMEEE e Inefficient: Searches irrelevant areas
eI, e Requires to manual define discretization
e All grid points need to be evaluated

\_

VAN

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger

(08 15



Option 2: Random Search

Variation of Grid Search: Uniformly
sample configurations at random

TestAccuracy

f(A, )
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Option 2: Random Search |l

/Advantages \

Very easy to implement

Very easy to parallelize

Can handle all types of hyperparameters

No discretization required

ol . Anytime algorithm: Can be stopped and continued based

- il 1| | e k on the available budget and performance goal. /
~

Disadvantages

e Scales badly with #dimensions
e [nefficient: Searches irrelevant areas

- J
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Grid Search vs. Random Search

With a budget of /" iterations:

1
Grid Search evaluates only J'd unique
values per dimension

Random Search evaluates (most likely) I’
different values per dimension

Unimportant parameter

— Grid search can be disadvantageous if
some hyperparameters have little of no
impact on the performance [Bergstra et al. 2012]
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Random Search

Important parameter

Image source: [Hutter et al.
2019
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Questions?




Kahoot Quiz |



How do we optimize it efficiently?

>> Here's my algorithm, data and design space and I have only limited time, what should I do?

21



Model-based Optimization

observation

acquisition max

ESSAI SummerSchol 2023
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Photo by Wilhelm Gunkel on Unsplash
Image by Feurer, Hutter: Hyperparameter Optimization
In: Automated Machine Learniag
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Bayesian Optimization in a Nutshell

Observation

Objective function

2 4 6 8 10 12
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Bayesian Optimization in a Nutshell

Observation

Posterior uncertaint{f
Objective function

Posterior mean

ESSAI SummerSchol 2023

10 12
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Bayesian Optimization in a Nutshell

Observation

Posterior mean

Posterior uncertainty

Objective function

/\/\A‘}uisition function
S /\

2 4 6 8
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Bayesian Optimization in a Nutshell

———
-
— -
——
= -~ —‘4
- o )

Observation

Posterior mean
Acquisition function

Acquisition max

Posterior uncertainty ®

Objective function

-_—
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Bayesian Optimization in a Nutshell

Observation =
General approach s \
= 0y ///
o Fi — "‘/
Flt a probabllls-tlc mOdeI s the Acquisition max Posterior mean Posterior uncertainty\
collected function samples (X, c(X)) ) Acauigtion functon M
@ Use the model to guide optimization, 2 & .4 6 8 10 v
A

trading off exploration vs exploitation

Popular approach in the statistics
literature since Mockus et al. [1978]

e Efficient in #function evaluations

@ Works when objective is nonconvex, A
noisy, has unknown derivatives, etc.

@ Recent convergence results
[Srinivas et al. 2009; Bull et al. 2011; de
Freitas et al. 2012; Kawaguchi et al. 2015]

2 4 6 8 10
A
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Bayesian Optimization: Pseudocode

BO loop

Require: [Search space A |cost function ¢|acquisition function u||pre-|
|dictive model é]lmazdmal number of function evaluations T|

Result : Best configuration A (according to D or ¢)
1 Initialize data D(©) with initial observations
2 fort=1to T do
Fit predictive model ¢®) on D1

3
4 Select next query point: A € arg max, 5 u(A; DED 6®)
5
6

Query c()\(t))
| Update data: D® « D=1y {(A®) c(AD))}

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger 28



Why is it called Bayesian Optimization?

@ Bayesian optimization uses Bayes' theorem:

P(B|A) x P(A)
P(B)

P(A|B) = x P(B|A) x P(A)

@ Bayesian optimization uses this to compute a posterior over functions:

P(f|D1:t> X P(D1t|f) X P(f)a where Dl:t = {Alztac(Alzt)}

Meaning of the individual terms:
» P(f) is the prior over functions, which represents our belief about the space of possible
objective functions before we see any data
» Dy is the data (or observations, evidence)
> P(Dy.|f) is the likelihood of the data given a function
» P(f|D1.4) is the posterior probability over functions given the data

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger 29



Bayesian Optimization: Pros and Cons

@vantages \ /Disadvantages \

e Sample efficient e Overhead because of

e Can handle noise model training

e Priors can be incorporated e Crucially relies on robust

e Does not require gradients surrogate model

e Theoretical guarantees o gas_ quite a few design

ecisions

Many extensions available: k /
Multi-Objective | Multi-Fidelity |

Parallelization | Warmstarting | etc. /

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger 30



Main Ingredient |I: The Acquisition Function

The acquisition function

e decides which configuration to evaluate next
e judges the utility (or usefulness) of evaluating a configuration (based on the
surrogate model)

— It needs to trade-off exploration and exploitation

e Just picking the configuration with the lowest prediction would be too greedy
e It needs to consider the uncertainty of the surrogate model

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger 31



Expected Improvement (El)

GP Mean

- == Qbjective function
1.0x Sigma Confidence Envelope 7

—2 By 2.0x Sigma Confidence Envelope

3.0x Sigma Confidence Envelope

V¥ Current Incumbent
—4 8 Observations
2 4 6 8 10 12
A

Given some observations and a fitted surrogate,
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Expected Improvement (El)

0 —— GP Mean 0
_________ C_' S . > 7 1.0x Sigma Confidence Envelope *
— g 2.0x Sigma Confidence Envelope
2

3.0x Sigma Confidence Envelope
V¥ Current Incumbent
—4 ¥ Observations

2 4 6 8 10 12
A

Given some observations and a fitted surrogate,
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Expected Improvement (El)

4

2

*
|

0 % —— GP Mean
Cinc [~~~ ~—="""9"lll e Rt 1.0x Sigma Confidence Envelope 7
—2 2.0x Sigma Confidence Envelope

3.0x Sigma Confidence Envelope
V¥ Current Incumbent
—4 8 Observations
2 4 6 8 10 12
A

We care about improving over the c__ .
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Expected Improvement (El)

A

We care about improving over the c__ .
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Expected Improvement (El)

I

NO
|
I
I
I
I
I
I
I
I
I
I
1
I
I

- ————— =]

A

Let's look at a candidate configuration A, and its hypothetical cost c.
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Expected Improvement (El)

4
2
* ®
of % ¥
Cine =="=""""""8 AR it AR .. 0900
______________ Ao, .
-2 : lc =Cinc—C
|
|
—4 |
'Aq
2 4 6 8 10 12

We can compute the improvement | (A,). But how likely is it?
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Expected Improvement (El)

Knowing that ¢(A) = M (u(X),0%(X)), we can compute p(c|A)
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Expected Improvement (El)

Comparing this for different configurations
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Expected Improvement (El)

and costs.
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Expected Improvement (El)

To compute El, we sum all p(c | A) x I.over all possible cost values.

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger 41



Expected Improvement (El) - Formal Definition

We define the one-step positive improvement over the current incumbent as
IO(X) = max(0, ¢ine — (X))

Expected Improvement is then defined as

—0

W) =BIIOW) = [ 50 X) x 100 de

Since posterior is Gaussian, El can be computed in closed form.

Choose A € arg max(u%)l()\))
A€EA
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Other Acquisition Functions

L Improvement-based pO”CieS [Expected Improvement (El), Probability of Improvement (PI), and Knowledge Gradient]
o Optimistic policies upperiLower Confidence Bound (UCB/LCB)]
e Information-based policies [entropy search (Es)]

O aim to increase certainty about the location of the minimizer

O not necessarily evaluate promising configurations
e Methods combining/mixing/switching these iroiman et al 2011; cowen-Rivers 20221
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Questions?




Main Ingredient Il: The Surrogate Model

Required in all cases ) 4
e Regression model with
uncertainty estimates
e Accurate predictions
- P Y,

/Depending on the application \

e Cheap to train

N o
\ SLe --- Objective function

e Scales well with #observations o e
and #dimensions 2 4 6 8 10 12 14
e Can handle different types of A
\ hyperparameters /
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Types of Surrogates Models

e (Gaussian Processes

e Random Forests

e Bayesian Neural Networks

Photo by Filip Zrnzevi¢ on Unsplash
Photo by Alina Grubnyak on Unsplash
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Gaussian Processes

E[f(x)
E [<f<x> CE[f()]) (Fx) - E[f(x')])]
f(x) ~ G (m(x), k (x,%))

(a

m(x) =

k(x,x') =

~

dvantages

\_

e Smooth uncertainty estimates

e Strong sample efficiency

e Expert knowledge can be
encoded in the kernel

e Accurate predictions

/

ESSAI SummerSchol 2023

ﬁisadvantages

\_

Cost scales cubically with
#observations

Weak performance for high
dimensionality

Not easily applicable in
discrete, categorical or
conditional spaces
Sensitive wrt its own
hyperparameters

— These make GPs
the most commonly
used model for
Bayesian optimization

/

AutoML: Accelerating Research on and Development of Al Applications
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Tree-Based Methods

O
@ ® ¢
@ @
Gvantages Disadvantages \
e Scales well with #dimensions e Poor uncertainty estimates — These mak.e RF.S
and #observations e Poor extrapolation (constant) a robust option in
e Training can be parallelized e Expert knowledge can not be high dimensions, a
and is fast easily incorporated high number of
e Can easily handle discrete, \ / evaluations and for
categorical and conditional mixed spaces
spaces
e Robust wrt. its own

hyperparameters Photo by Filip Zrnzevi¢ on Unsplash
Photo by Alina Grubnyak on Unsplash
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Bayesian Neural Networks

0.5

oge @ &

/ /
V4
>
.4 A =
\ ‘

Image source: [Blundell et al. 2

K

015]

[

\_

dvantages

Scales linear #observations

(Can yield) smooth uncertainty

estimates
Flexibility wrt. discrete and
categorical spaces

~

/

ESSAI SummerSchol 2023

N
o

(o

isadvantages

e Needs many #observations
e Uncertainty estimates often

worse than for GPs
e Many hyperparameters
e No robust off-the-shelf model

/
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— These make
BNNs a promising

alternative. [Li et al.
2023]

Photo by Filip Zrnzevi¢ on Unsplash
Photo by Alina Grubnyak on Unsplash
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Questions?




Kahoot Quiz ||



How do we optimize it even more?

>> Here's my algorithm, data and design space, I have only limited time and I want more, what should I do?

52



Bayesian Optimization: Extensions

Different models to Increase efficiency
handle new design A by using lower
spaces n fidelities

v /

Multi-objective

observation

acquisition max

Consider
constraints \ e
\

J

) Take user priors into | ¥
An account

Leverage
observations across p——9 f(A
experiments

Photo by Wilhelm Gunkel on Unsplash
Image by Feurer, Hutter: Hyperparameter Optimization
In: Automated Machine Learnjiag
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Multi-Fidelity Bayesian Optimization

Often, the black-box

e is an iterative process,
e has cheaper approximations
available,
e or can be evaluated partially
" — We can collect information about
the actual objective value with less
costly evaluations

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger 54



Two Motivating Examples

Performance of a SVM on different Learning curves of fully connected
subsets of MNIST NNs on CIFAR-10

Smax /128 Smax /16

log(C)
log(C)

accuracy

Smax/4 Smax 3 i : _, 3 —
©) =) A . :
o0 =a L
3 3

o 50 100 150 200 250 300 350
epochs
Image Source: [Domhan et al., 2015]
log(y) log(y)
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Successive Halving

loss

[Jamieson and Talwalkar. 2016]

0% budget 100 %
@ A very simple algorithm:

» Sample N configurations uniformly at random & evaluate them on the s B -
cheapest fidelity

» Keep the best half (or third), move them to the next fidelity

» lIterate until the most expensive fidelity (= original expensive black box)
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Hyperband

What if the information on the lowest fidelity is not informative?

— Run multiple iterations of SH, starting at different “lowest” fidelities.

10~}

20x speedup s RS

3x speedup

107y o 10! 102 10° 10° 107 109
wall clock time [s]

image credit: [Falkner et al. 2018]
AutoML: Accelerating Research on and Development of Al Applications
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BOHB: Hyperband X Bayesian Optimization

Idea: Use Bayesian Optimizationto 10"

choose configurations (rakner et al 2015 20x speedup == RS
e BO to achieve strong
performance g BO-HB
e HB to achieve good anytime "
performance
50x speedup
o S wall clock time |[s
— with interleaved random sampling it ) 3

keeps theoretical guarantees of HB

image credit: [Falkner et al. 2018]
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Landscape of Multi-Fidelity HPO Methods

Mean rank

10

(00)

(@)

IS

2_

single-fidelity

multi-fidelity

IO
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10—4

102

Fraction of budget

10°
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Hyperband =~ —— DEHB
—— BOHB SMAC-HB
—— Dragonfly
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~=+- DE ==- BOg =-- HEBO

Image source: [Eggensperger et al. 2021]
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Questions?




Multi-Objective Optimization

In practice, we often care about more than a single
A, objective, e.g.

error,

inference time
unfairness,

energy consumption,
model complexity,
and many more
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Practical Example

Goal: Find a Neural Network
with high accuracy and low
latency

latency ® low error —usually high latency

Conflicting objectives

— Objectives are measured on
different scales

low latency
— usually high error

— There is no single optimal PY
solution

error

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger 62



Definition

A multi-criteria optimization problem is defined by
min c¢(A) < min (¢1(A), ca(A), ..., (A)),
min o(A)  min (1 (A), 2N, s em(N)
with A C R™ and multi-criteria objective function ¢: A — R™, m > 2.
@ Goal: minimize multiple target functions simultaneously.
o (c1(A),...,c;m(X)) " maps each candidate X into the objecive space R™.

@ Often no clear best solution, as objective are usually conflicting and we cannot totally
order in R,

e W.l.o.g. we always minimize.

Alternative names: multi-criteria optimization, multi-objective optimization, Pareto
optimization.
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Pareto Sets and Pareto Optimality

Definition:
Given a multi-criteria optimization problem

min (c1(A)y.ccsem(A)), ¢ :A—R.

o A candidate A1) (Pareto-) dominates A?), if c(A()) < ¢(A(?)), i.e.
Q c;(AY) < ;(A?) foralli € {1,2,...,m} and
Q ;A1) < ¢;(A?) for at least one j € {1,2,...,m}

@ A candidate A* that is not dominated by any other candidate is called Pareto optimal.

@ The set of all Pareto optimal candidates is called Pareto set
P:={A e Al AXwith ¢(A) < c(N)}
o F =c¢(P)={c(A)|X € P} is called Pareto front.

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger 04



Practical Example

ESSAI SummerSchol 2023

it i g
lateney

latency

Goal: Find the Pareto Set of
Neural Networks that balance
accuracy and latency.

low error —usually high latency

@)
@)
Conflicting objectives

o
@)

low latency
— usually high error

AutoML: Accelerating Research on and Development of Al Applications

error
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Multi-Objective Bayesian Optimization

BO loop

Require: Search space A, cost function ¢, acquisition function u, pre-

dictive model ¢, maximal number of function evaluations T'

Result : Best configuration A (according to D or ¢)
Initialize data D) with initial observations
fort =1to T do
Fit predictive /model &) on D1
Select next query point: A € argmax, 5 lu(X; DD, &) rd
Query ¢c(AW)

Update data: D « DED G {AD (AW

S b~ W NN

Two basic approaches:

e Simplify the problem by
scalarizing cost
functions

e Define a new
acquisition function for
multiple costs

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger 06




Scalarization

Idea: Aggregate all cost functions

m
min w;c;(A) with w; >0
A€EA “
=1
@ Obvious problem: How to choose wyq, ..., w,?

» Expert knowledge?
» Systematic variation?
» Random variation?

o If expert knowledge is not available a-priori, we need to ensure that different trade-offs
between cost functions are explored.

@ Simplifies multi-criteria optimization problem to single-objective
— Bayesian optimization can be used without adaption of the general algorithm.
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Scalarization: ParEGO

Scalarize the cost functions using the augmented Tchebycheff norm / achievement function

c= max (wjc(A))+ pricz-()\),
i=1

i=1,....m

@ The weights w € W are drawn from
- l
W =« w= (wl,...,wm)|;wi: Lome = E,ZEO,...,S '

. s+m—1
with [W|= (*7""])1.
@ New weights are drawn in every BO iteration.
@ p is a small parameter suggested to be set to 0.05.
@ s selects the number of different weights to draw from. [Knowles et al. 2006]
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ParEGO

ParEGO loop
Require: Search space A, cost function ¢, acquisition function u, predictive
model ¢, maximal number of function evaluations T',[p, [, s
Result : Best configuration X (according to D or ¢)
1 Initialize data D(©) with initial observations
2 fort=1to 7T do
Sample w from {w = 1 o )| D are s = L = é/\,l €0,.. .,s};
Compute scalarization ¢(!) = max;=1,...m (Wici(A)) + p D _ivq wici(A);
Fit predictive model élY) on DU—1)

Select next query point: A" € arg maxy, u(X; DUV, &®)
Query c(AY)
Update data: D® + DE=1 g {(AD ¢(AD))}

00 N ©o O & W
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Questions?




Kahoot Quiz Il



Demo: SMAC

>> Here's my algorithm, data and design space, I have only limited time and want to use Bayesian
Optimization, what should I do?

72



Recommendations

e Literature

o Bayesian Optimization

o A Tutorial on Bayesian Optimization
e Bayesian Optimization Tools

o SMAC3 (Colab Demo)

o Optuna
o Syne-Tune
o BoTorch
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Thanks.

See you tomorrow!
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