Human-Centered AutoML

Marius Lindauer

Leibniz Universität Hannover Germany

/ LindauerMarius m.lindauer@ai.uni-hannover.de

Katharina Eggensperger

Eberhard Karls Universität Tübingen Germany

/ KEggensperger katharina.eggensperger@uni-tuebingen.de

Story Line Today

- 1. How to reach more people with AutoML?
 - a. What's missing after 10+ years of research on AutoML?
- 2. What can we learn from running AutoML?
 - a. Local explanations
 - b. Global explanations
- 3. How can you augment AutoML with your own expert knowledge?
- 4. How will LLMs change the game?

ESSAI SummerSchol 2023

AutoML aims at

Automating workflows of ML development Reduce required expert knowledge

Scaling up

ESSAI SummerSchol 2023

AutoML: Accelerating Research on and Development of AI Applications

But what if ...

insights into the AutoML black box are crucial? we have expert knowledge?

we want to learn from AutoML?

AutoML for Who?

Domain experts with little to no ML expertise

ML practitioners and researchers

ESSAI SummerSchol 2023

Goals in Using HPO [Hasebrook et al. 2023]

Decrease Necessary Computations Decrease Practitioner Effort Increase Model Comprehension Increase Model Performance Satisfy Requirements Target Audience Compliance 10 20 30 40 50 70 80 90 0 60 100 Participants (%)

Survey on HPO Use [Hasebrook et al. 2023]

What do you use typically?

Explainable AutoML

Local Explanations Global Explanations

Overall Workflow

Ablation Studies

- Ablation studies are quite common in ML papers
 - $\circ \rightarrow$ shows which of your changes has the largest impact on performance
- Quite easy to implement
 - For your overall system S with (new) features F, turn off each $f \in F$ and measure its performance

		10min		60min	
		Ø	std	Ø	std
With Portfolio	Policy selector Single best	3.58 <u>3.69</u>	$\begin{array}{c} 0.23 \\ 0.14 \end{array}$	$\frac{2.47}{2.44}$	$\begin{array}{c} 0.18\\ 0.12\end{array}$
Without Portfolio	Policy selector Single best	$\frac{5.63}{5.37}$	$\begin{array}{c} 0.89 \\ 0.58 \end{array}$	$3.42 \\ 3.61$	$\begin{array}{c} 0.32\\ 0.61 \end{array}$

From Auto-Sklearn 2.0 [Feurer et al. 2022]

Automating Ablations in High-Dimensional Spaces

- Often, a new system adds more than one component (→ several binary hyperparameter)
- Even worse: hyperparameter settings might change
 (→ also binary hyperparameter decisions: change or not change!)

⇒ leads to a combinatorial space of changes

Example of changes:

- changing DNN optimizer, learning rate, learning rate schedule, depth of DNN, ...
- Problem: We cannot enumerate all possible changes
- Solution: Greedily navigate from our starting system to your final system

ESSAI SummerSchol 2023

Example for Automated Greedy Ablation [Fawcett & Hoos 2015]

- Start configuration:
 - a) your initial system that you modified for your research paper
 - b) the default configuration of your system (e.g., ML model)
- End configuration:
 - a) your final system (configuration)
 - b) the result of applying AutoML

$$\begin{aligned} \boldsymbol{\lambda}^{(\text{start})} &= [1, 1, 0, 100] & L_{\text{start}} = 20\% \\ \boldsymbol{\lambda}^{(\text{end})} &= [0.98, 2.42, 1, 42] & L_{\text{end}} = 4\% \end{aligned}$$

Example cont'd (i)

$$\begin{aligned} \boldsymbol{\lambda}^{(\text{start})} &= [1, 1, 0, 100] & L_{\text{start}} = 20\% \\ \boldsymbol{\lambda}^{(\text{end})} &= [0.98, 2.42, 1, 42] & L_{\text{end}} = 4\% \end{aligned}$$

1st iteration - iterate through all possible changes from "start" to "end"

$$\begin{aligned} \boldsymbol{\lambda}^{(1)} &= [0.98, 1, 0, 100] \quad L_1 = 19\% \\ \boldsymbol{\lambda}^{(2)} &= [1, 2.42, 0, 100] \quad L_2 = 20\% \\ \boldsymbol{\lambda}^{(3)} &= [1, 1, 1, 100] \quad L_3 = 7\% \\ \boldsymbol{\lambda}^{(4)} &= [1, 1, 0, 42] \quad L_4 = 16\% \end{aligned}$$

The 3rd configuration has the best loss.

 \rightarrow Fix the 3rd hyperparameter to "1" instead of "0"

Example cont'd (ii)

$$\begin{split} \boldsymbol{\lambda}^{(\text{start})} &= [1, 1, 0, 100] & L_{\text{start}} = 20\% \\ \boldsymbol{\lambda}^{(s1)} &= [1, 1, 1, 100] & L = 7\% \\ \boldsymbol{\lambda}^{(\text{end})} &= [0.98, 2.42, 1, 42] & L_{\text{end}} = 4\% \end{split}$$

2nd iteration – iterate through all (three) remaining hyperparameters

$$\lambda^{(1)} = \begin{bmatrix} 0.98, 1, 1, 100 \end{bmatrix} \quad L_1 = 6\%$$

$$\lambda^{(2)} = \begin{bmatrix} 1, 2.42, 1, 100 \end{bmatrix} \quad L_2 = 7\%$$

$$\lambda^{(3)} = \begin{bmatrix} 1, 1, 1, 42 \end{bmatrix} \qquad L_3 = 5\%$$

The 3rd configuration has the best loss.

 \rightarrow Fix the **4th** hyperparameter to "42" instead of "100"

ESSAI SummerSchol 2023

Example cont'd (iii)

$$\begin{array}{lll} \boldsymbol{\lambda}^{(\text{start})} &= [1, 1, 0, 100] & L_{\text{start}} = 20\% \\ \boldsymbol{\lambda}^{(s1)} &= [1, 1, 1, 100] & L = 7\% \\ \boldsymbol{\lambda}^{(s2)} &= [1, 1, 1, 42] & L = 5\% \\ \boldsymbol{\lambda}^{(\text{end})} &= [0.98, 2.42, 1, 42] & L_{\text{end}} = 4\% \end{array}$$

3rd iteration – iterate again over all remaining (two) hyperparameters

$$\boldsymbol{\lambda}^{(1)} = \begin{bmatrix} 0.98, 1, 1, 42 \end{bmatrix} \quad L_1 = 4\%$$
$$\boldsymbol{\lambda}^{(2)} = \begin{bmatrix} 1, 2.42, 1, 42 \end{bmatrix} \quad L_2 = 5\%$$

The 1st configuration has the best loss.

- \rightarrow Fix the **1st** hyperparameter to "0.98" instead of "1"
- \rightarrow Fix the **2nd** hyperparameter to "2.42" instead of "1" (last remaining)

$$\begin{split} \boldsymbol{\lambda}^{(\text{start})} &= [1, 1, 0, 100] & L_{\text{start}} = 20\% \\ \boldsymbol{\lambda}^{(s1)} &= [1, 1, 1, 100] & L = 7\% \\ \boldsymbol{\lambda}^{(s2)} &= [1, 1, 1, 42] & L = 5\% \\ \boldsymbol{\lambda}^{(s3)} &= [0.98, 1, 1, 42] & L = 4\% \\ \boldsymbol{\lambda}^{(s4)} &= [0.98, 2.42, 1, 42] & L = 4\% \\ \boldsymbol{\lambda}^{(\text{end})} &= [0.98, 2.42, 1, 42] & L_{\text{end}} = 4\% \end{split}$$

Greedy Ablation Algorithm

Algorithm Greedy Ablation

Input : Algorithm A with configuration space Λ , start configuration $\lambda^{(start)}$, end configuration $\lambda^{(end)}$, cost metric c

```
\lambda \leftarrow \lambda^{(\text{start})}:
  P \leftarrow []:
  foreach t \in \{1 \dots |\Lambda|\} do
       foreach \delta \in \Delta(\lambda, \lambda^{(end)}) do
              \lambda'_{\delta} \leftarrow \text{apply } \delta \text{ to } \lambda;
evaluate c(\lambda'_{\delta});
       Determine most important change \delta^* \in \arg \min_{\delta \in \Delta(\lambda, \lambda^{(end)})} c(\lambda_{\delta});
          \lambda \leftarrow apply \ \delta^* \ to \ \lambda;
          P.append(\delta^*);
return Ablation path P
```


Final Remarks on Greedy Ablation

- Even this greedy ablation requires O(n²) steps
 - each step corresponds to training and evaluating a ML model
 - $\circ \rightarrow$ still fairly expensive process
- We can also speedup that up by using surrogate models [Biedenkapp et al. 2017]
- Common observations:
 - Some hyperparameters might not matter
 - Often only a few of the hyperparameters have an big impact
 - You have plateaus in your ablation path because of interaction effects

LPI: Local Parameter Importance [Biedenkapp et al. 2018]

- Typical question of users: How would the performance change if we change one hyperparameter?
 - E.g., if we would change the learning rate, can we get even better results?
- Problem: Running full study is often too expensive
 - Each run of an ML-system is potential expensive
- Key Ideas:
 - Re-use probabilistic models as trained in BO
 - Plot performance change around incumbent configuration along each dimension
 - incumbent configuration: the configuration finally returned by AutoML

Computation of LPI

$$\begin{aligned} \mathsf{VAR}_{\lambda}(i) &= \sum_{v \in \Lambda_{i}} (\mathbb{E}_{v \sim \Lambda_{i}}[L(\lambda)] - L(\lambda[\lambda_{i} := v]))^{2} \\ \mathsf{LPI}(i \mid \lambda) &= \frac{VAR_{\lambda}(i)}{\sum_{j} VAR_{\lambda}(j)} \end{aligned}$$

- 1. Compute ICE (Individual Conditional Expectation) curve at the incumbent
- 2. Compute the variance along Dimension i
- 3. Normalize variance for each Dimension i by variation along all dimensions

Note: Only one dimension at a time is changed; all others are fixed to the incumbent value

learning rate

Kahoot Quiz I

Explainable AutoML

Local Explanations
 Global Explanations

Parallel Coordinate Plots

- Visualization of sampling in high-dimensional hyperparameter spaces
 [Golovin et al. 2017]
- Allows to identify:
 - optimization focus of AutoML optimiziers
 - well-performing combination of settings
 - Interaction effects between settings (to some degree)
- Rather qualitative, less quantitative analysis
- Follow up: Conditional parallel coordinate plots [Weidele et al. 2019]

ESSAI SummerSchol 2023

AutoML: Accelerating Research on and Development of Al Applications

Marius Lindauer / Katharina Eggensperger

fANOVA

- Key idea: What is the importance of a hyperparameter by marginalizing over all other hyperparameter effects?
- Key Insight: We can use a surrogate model to compute these effects

fANOVA [Sobobl. 1993]

Write performance predictions as a sum of components:

$$\hat{y}(\boldsymbol{\lambda}_1,\ldots,\boldsymbol{\lambda}_n) = \hat{f}_0 + \sum_{i=1}^n \hat{f}_i(\boldsymbol{\lambda}_i) + \sum_{i\neq j} \hat{f}_{ij}(\boldsymbol{\lambda}_i,\boldsymbol{\lambda}_j) + \ldots$$

 $\hat{y}(\boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_n) =$ average response + main effects + 2-D interaction effects + higher order effects

Variance Decomposition

$$\mathbf{V} = \frac{1}{||\mathbf{\Lambda}||} \int_{\boldsymbol{\lambda}_1} \dots \int_{\boldsymbol{\lambda}_n} [(\hat{y}(\boldsymbol{\lambda}) - \hat{f}_0)^2] d\boldsymbol{\lambda}_1 \dots d\boldsymbol{\lambda}_n$$

ESSAI SummerSchol 2023

fANOVA

• The fANOVA and variance decomposition can be done efficiently in linear time if the surrogate model is a random forest [Hutter et al. 2014]

- predicted cost is marginalized over all other hyperparameter effects
- Warning: The optimum on these curves does not have to be the global optimum across all hyperparameters

_

Table: Exemplary analysis of PPO on cartpole

Hyperparameter	Explained Variance		
Discount rate	19.3 %		
Batch size	15.7 %		
Learning rate	3.7 %		
Likelihood ration clipping	3.4%		
discount rate & batch size	10.4%		
discount rate & likelihood ration clipping	4.4%		

Explaining HPO with PDPs [Moosbauer et al. NeurIPS'21]

PDP

PDP: Partial Dependence Plots

For, a subset *S* of the hyperparameters, the partial dependence function is:

$$c_S(\lambda_S) := \mathbb{E}_{\lambda_C} \left[c(\lambda) \right] = \int_{\Lambda_C} c(\lambda_S, \lambda_C) d\mathbb{P}(\lambda_C)$$

and can be approximated by Monte-Carlo integration on a surrogate model:

$$\hat{c}_S(\lambda_S) = \frac{1}{n} \sum_{i=1}^n \hat{m}\left(\lambda_S, \lambda_C^{(i)}\right)$$

where $\left(\lambda_C^{(i)}\right)_{i=1,...,n} \sim \mathbb{P}(\lambda_C)$

and λ_S for a of grid points.

 \rightarrow Average of ICE curves.

Quantifying Uncertainties in PDPs

$$\hat{s}_{S}^{2}(\lambda_{S}) = \mathbb{V}_{\hat{c}} \left[\hat{c}_{S} \left(\lambda_{S} \right) \right]$$
$$= \mathbb{V}_{\hat{c}} \left[\frac{1}{n} \sum_{i=1}^{n} \hat{c} \left(\lambda_{S}, \lambda_{C}^{(i)} \right) \right]$$
$$= \frac{1}{n^{2}} \mathbf{1}^{\top} \hat{K} \left(\lambda_{S} \right) \mathbf{1}.$$

 \rightarrow requires a kernel correctly specifying the covariance structure (e.g., GPs).

Approximation:

$$\hat{s}_{S}^{2}(\lambda_{S}) \approx \frac{1}{n} \sum_{i=1}^{n} \hat{K}(\lambda_{S})_{i,i}$$

 \rightarrow Model-agnostic (local) approximation

Problem: Biased Sampling

- PDPs assume that the data is independently, identically distributed (iid)
- Obviously not the case for efficient AutoML tools with a focus on high-performance regions
- Example:
 - BO with GPs and LCB
 - Different exploration rate for LCB to show different sampling bias

$$LCB(\lambda) = \mu(\lambda) + \beta \cdot \sigma(\lambda)$$

Impact of the Sampling Bias

- Simply using all observations from AutoML tools might lead to misleading PDPs
- Uncertainty estimates help to quantify the poor fits
- \rightarrow Sampling bias is wanted and a solution to this problem should not change the sampling behavior

Partitioning of Space

Partition space to obtain interpretable subspaces \mathcal{N}^{\prime}

Uncertainty variation across all ICE estimates:

$$L(\lambda_S, \mathcal{N}') = \sum_{i \in \mathcal{N}} \left(\hat{s}^2 \left(\lambda_S, \lambda_C^{(i)} \right) - \hat{s}_{S|\mathcal{N}'}^2 \left(\lambda_S \right) \right)^2$$
$$\hat{s}_{S|\mathcal{N}'}^2(\lambda_S) := \frac{1}{|\mathcal{N}'|} \sum_{i \in \mathcal{N}'} \hat{s}^2 \left(\lambda_S, \lambda_C^{(i)} \right)$$

\rightarrow Uncertainty structure of ICE curves should maximally agree Split Loss = Aggregation over all grid points:

$$\mathcal{R}_{L2}(\mathcal{N}') = \sum_{g=1}^{G} L(\lambda_S^{(g)}, \mathcal{N}')$$

Note (i): Partition only along the marginalized dimensions

(cc)

Better PDPs with BO-BAX [Moosbauer et al. 2022]

- Bayesian Algorithm Execution [Neiswanger et al. 2021] allows to compute the best next point to improve quality of PDPs
- Interleaving BO and BAX for PDPs leads to (i) nearly the same anytime performance than standard BO (ii) much better PDPs

21

(cc)

- Pushak and Hoos [2022] provided evidence for fairly benign HPO landscape
 - e.g. unimodal and little interactions
- \Rightarrow So, it should be feasible to learn interpretable symbolic regression models

$$\mathcal{L}_{\text{Loss}} = \frac{0.845}{\sqrt{\text{max_depth}}}$$

Symbolic Regression for HPO [Segel et al. 2023]

Complexity of Symbolic Regression for HPO [Segel et al. 2023]

ESSAI SummerSchol 2023

AutoML: Accelerating Research on and Development of Al Applications

BY SA

Reducing Complexity of Symbolic Regression for HPO

- 1. Apply fANOVA (or some other technique) to identify the *N* most important hyperparameters
- 2. Marginalize over the dropped hyperparamters
 - a. E.g. similar to PDPs
- 3. Apply symbolic regression to it
- 4. Use elbow point if complexity of symbolic function is still too high

DeepCAVE: A Package to Analyse AutoML [Sass et al. 2022]

DeepCAVE		Matplotlib off		
General	Configuration Footprint	0		
Summary				
Q Overview	SMAC	~		
	Objective Budget @			
Configuration Footprint	Cost Combined	~		
Objective Analysis				
🗠 Cost Over Time				
Configuration Cube	Low Medium	High		
😽 Pareto Front	Process			
D Parallel Coordinates				
Budget Analysis	Show Border Configurations Show Support Configuration	ns		
Budget Correlation	Yes v Yes	~		
Hyperparameter Analysis				
☆ Importances	Performance Coverage			
= Partial Dependencies		* Border Configuration		
		 Random Configuration Configuration Configuration 		
	and the second	Cost		
		0.6		
	and the second	0.4		
	and the second			
	a standardarda a			
	Raw Data			

() /automl/deepcave

Available:

- Summary of experimental setup
- Objective Analysis
- Budget analysis in multi-fidelity settings
- Hyperparameter analysis

⇒ All of our explanation techniques will be added to DeepCAVE!

More Interpretability of AutoML?

- In principle, we could apply (nearly) all techniques from interpretable machine learning (iML) to surrogate models of AutoML optimizers
 - E.g., LIME, Anchors, SHAP, ...
 - All of them face the same problem of underlying sampling bias induced by AutoML optimizers
- Challenges:
 - When to apply which interpretability method? What is interesting for users?
 - Assuming an AutoML practitioner with little to no expertise in ML, which explanations are they able to understand?
 - Assuming that AutoML landscapes changes dependent on the dataset at hand, what kind of universal take-aways can we learn from that?

Kahoot Quiz II

Interactive AutoML

Considering Expert Knowledge in HPO[Souza et al. ECML'21, Hvarfner et al. ICLR'22]

Types of Expert Knowledge

- 1. Shape of the underlying function, e.g., smoothness
- 2. Interaction effects of hyperparameters
- 3. Importance of hyperparameters
- 4. Areas of (presumable) well-performing hyperparameter configurations

π-BO [Hvarfner et al. ICLR'22]

π-BO: Results [Hvarfner et al. ICLR'22]

- → Uses expert knowledge to speed up Bayesian Optimization
- → Robust also against wrong believes
- → Substantially speeds up AutoML

PriorBand: Expert Priors + Hyperband [Malik et al. 2023]

- How can we run HPO under 10 full model trainings?
- Four main insights
 - 0. Multi-fidelity and prior-guided optimization is key for efficiency
 - 1. Trusting priors more at higher fidelities
 - 2. Incumbent-based sampling of new configurations
 - 3. Ensembling of sampling policies

AutoML in the age of LLMs? [Tornede et al. 2023]

AutoML for LLMs is still a big challenge

Challenges of Applying AutoML to LLMs

- 1. Pre-Training of LLMs is very expensive
 - scaling laws, multi-fidelity and human-priors might help
- 2. Joint optimization of the entire LLM pipeline is **not feasible** without knowing the downstream task (distribution)
- 3. Neural architecture search is still **not powerful** enough to find fully novel architectures
 - see lecture on NAS
- 4. There is **no single metric** to be optimized sinced different metrics are used for the different stages of training an LLM
- Combination of several learning paradigms lead to very complex search spaces

Opportunities for interaction with AutoML via LLMs

Deeply Integrating LLMs into AutoML

Conclusion

Take-Home Insights

- Who is going to run AutoML?
 - Different user groups have different expectations
 - How to increase trust into the results of AutoML?
- What would you like to learn from running AutoML?
 - importance of hyperparameters?
 - effects of hyperparameters?
- What kind of expert knowledge is available to you and AutoML users?
 - Do you have an expectation what should perform well?
- LLMs might change how we use (Auto)ML in the future

Kahoot Quiz III

Thanks. See you tomorrow!

ESSAI SummerSchol 2023

AutoML: Accelerating Research on and Development of Al Applications

Marius Lindauer / Katharina Eggensperger

