

Deep Learning 2.0: AI that Builds AI

Frank Hutter

Professor for Machine Learning University of Freiburg fh@cs.uni-freiburg.de

@FrankRHutter

European Research Council

These slides are available at <u>www.automl.org/talks</u>

Motivation: Deep Learning is Everywhere Now

Speech recognition

UNI FREIBURG

Recommender systems

Semantic segmentation

Al-generated art

OpenAl's DALL-E 2: "A painting of an orthopedist diagnosing a patient's knee injury"

Autonomous Driving

Applications in medicine

Game playing

Massive Progress in Object Recognition in the Last Decade

Goals of Today's Lecture

Basic Principles of "Traditional" Machine Learning

- Supervised Learning (Classification, Regression)
- Machine Learning Design Cycle
- Proper Evaluation Protocols
- Traditional Machine Learning vs. Deep Learning
 - Learning Features From Raw Data
- From Deep Learning to Deep Learning 2.0
 - AutoML: Efficient ML & DL at the Push of a Button
 - Learning Entire Algorithms: AI that Builds AI

Supervised Learning: The Basic Idea

- Use past experience to predict the future
 - Use labelled data points $\langle (\mathbf{x}_i, y_i) \rangle_{i=1}^N$ that we collected in the past
 - to automatically construct a model whose prediction \hat{y}_{N+1} for a new data point \mathbf{x}_{N+1} is close to the actual label y_{N+1} .
- Machine learning terminology:
 - Data point \mathbf{x}_i , often a vector in \mathbb{R}^D
 - Label y_i

- + Regression: $y_i \in \mathbb{R}$
- + Classification: y_i discrete, e.g. $y_i \in \{\text{true, false}\}$, or $y_i \in \{\text{German, English, Spanish}\}$
- Past experience = training set $\langle (\mathbf{x}_i, y_i) \rangle_{i=1}^N$
- Automatically construct = learn, fit, induce
- Model = function, hypothesis, classifier/regressor

Supervised Learning: A Simple Regression Example

Predicting housing prices

- Let's say we only know the average number of rooms in an area
- And we'd like to predict the prize for a house in that area
- One data point: number of rooms \mathbf{x}_i and its prize y_i (in 1000's)
- This is a regression problem since $y_i \in \mathbb{R}$

Supervised Learning: a Simple Classification Example

- A classical data set from Botany: classifying Iris flowers
 - feature 1: sepal length
 - feature 2: sepal width

Classification problem: determine the flower's type (out of 3 options)

$\mathbf{x}_{i,1}$	$\mathbf{x}_{i,2}$	y_i
6.40	2.90	2
5.50	2.50	2
5.20	3.50	1
4.60	3.60	1
5.70	3.80	1
6.30	2.50	2
5.80	2.60	2
4.90	3.10	1
5.70	2.80	2
5.40	3.90	1

UNI FREIBURG

Slides at: http://automl.org/talks

- A private customer comes to a bank and applies for a loan
 - Should the bank give him the loan?
 - What features should the bank use to decide?
 - Features: credit amount, income, age, etc.

- Ways of casting this as a machine learning problem:
 - 1. Should the bank give the loan?
 - Classification or regression?

- 2. How much interest should the bank charge?
 - Classification or regression?

- Basic Principles of "Traditional" Machine Learning
 - Supervised Learning (Classification, Regression)
 - Machine Learning Design Cycle
 - Proper Evaluation Protocols
- Traditional Machine Learning vs. Deep Learning
 - Learning Features From Raw Data
- From Deep Learning to Deep Learning 2.0
 - AutoML: Efficient ML & DL at the Push of a Button
 - Learning Entire Algorithms: AI that Builds AI

- It's all about the data
 - Domain experts needed: curation, preprocessing, feature extraction & selection
- Machine learning
 - Focus for us; ML methods development
- Evaluation & model selection
 - Focus for us; I'm developing automated methods to do this better
- Post-processing
 - Domain experts needed: is the model actually useful in practice? Iterate!

- Basic Principles of "Traditional" Machine Learning
 - Supervised Learning (Classification, Regression)
 - Machine Learning Design Cycle
 - Proper Evaluation Protocols
- Traditional Machine Learning vs. Deep Learning
 - Learning Features From Raw Data
- From Deep Learning to Deep Learning 2.0
 - AutoML: Efficient ML & DL at the Push of a Button
 - Learning Entire Algorithms: AI that Builds AI

Beware of Overfitting: What is the Best Explanation for the Data?

• What is the best fit for the data?

- M=9 has zero training error
 - But it does
 NOT generalize

- Basic Principles of "Traditional" Machine Learning
 - Supervised Learning (Classification, Regression)
 - Machine Learning Design Cycle
 - Proper Evaluation Protocols

Traditional Machine Learning vs. Deep Learning

- Learning Features From Raw Data
- From Deep Learning to Deep Learning 2.0
 - AutoML: Efficient ML & DL at the Push of a Button
 - Learning Entire Algorithms: AI that Builds AI

Standard Machine Learning

- Standard machine learning algorithms are based on features
 - These are high-level attributes defined by domain experts
 - This requires (often substantial) feature engineering

Deep Learning

- Jointly learn features and classifier, directly from raw data
- This is also referrred to as end-to-end learning

- Deep Learning: learning a hierarchy of representations that build on each other, from simple to complex
- Features are learned in an end-to-end fashion, from raw data

Basic Structure of a Neural Network

What Happens Under the Hood?

• A single neuron performs two simple steps of computation:

- 1. Compute a weighted sum of the inputs: $z = x_1w_1 + x_2w_2 + x_3w_3$
- 2. Perform a nonlinear transformation: a = h(z).

Information Flow Through a Neural Network – Forward Pass

Information Flow Through a Neural Network – Backward Pass

UNI FREIBURG

Traditional ML practice before Deep Learning

- Basic Principles of "Traditional" Machine Learning
 - Supervised Learning (Classification, Regression)
 - Machine Learning Design Cycle
 - Proper Evaluation Protocols
- Traditional Machine Learning vs. Deep Learning
 - Learning Features From Raw Data

- AutoML: Efficient ML & DL at the Push of a Button
- Learning Entire Algorithms: AI that Builds AI

2016 ERC Starting Grant AutoML2021 ERC Consolidator Grant Deep Learning 2.0

UNI FREIBURG

Traditional ML practice before Deep Learning

Deep Learning

UNI FREIBURG

Deep Learning 2.0

 domain expert can specify objectives

- fairness
- robustness
- model calibration

- interpretability
- Iatency of predictions
- size(memory) of the model

UNI FREIBURG

• Paradigm-changing: democratizing Deep Learning

- DL 2.0 projects possible without a DL expert
- DL 2.0 directly optimizes for user's objectives
 → Trustworthy AI by design

DL 2.0 will be even more pervasive than DL 1.0, with huge impact on the billion-dollar DL market

- Basic Principles of "Traditional" Machine Learning
 - Supervised Learning (Classification, Regression)
 - Machine Learning Design Cycle
 - Proper Evaluation Protocols
- Traditional Machine Learning vs. Deep Learning
 - Learning Features From Raw Data
- From Deep Learning to Deep Learning 2.0
 - AutoML: Efficient ML & DL at the Push of a Button
 - Learning Entire Algorithms: AI that Builds AI

2016 ERC Starting Grant AutoML2021 ERC Consolidator Grant Deep Learning 2.0

Choices in Deep Learning That AutoML Can Help With

UNI FREIBURG Performance is very sensitive to many hyperparameters

Architectural hyperparameters

- Optimization: SGD variant, learning rate schedule, momentum, batch sizes, ...
- Regularization: dropout rates, weight decay, data augmentation, ...

\rightarrow Easily 20-50 design decisions

- Clean & preprocess the data
- Select / engineer better features
- Select a model family
- Set the hyperparameters
- Construct ensembles of models
- ...

Different Types of AutoML

- Full AutoML Systems for Featurized Data
 - You have featurized data and just need a model
 - We're world-leading in this, having won two world championship titles
 - E.g., better than 130 teams of human experts
 - Auto-sklearn: over 1000 forks on Github, 6000 stars, 20000 monthy downloads

Tool: Auto-sklearn, available at

https://github.com/automl/auto-sklearn

- Hyperparameter Optimization
 - You have data and a good pipeline for the data
 - But there are free choices you still need to set

Tool: SMAC, available at

FREIBURG

Case Study: AutoML Improved 12 Radiomics Segmentation Datasets

[Starmans et al, 2022]

(Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands)

Slides at: http://automl.org/talks

- Basic Principles of "Traditional" Machine Learning
 - Supervised Learning (Classification, Regression)
 - Machine Learning Design Cycle
 - Proper Evaluation Protocols
- Traditional Machine Learning vs. Deep Learning
 - Learning Features From Raw Data
- From Deep Learning to Deep Learning 2.0
 - AutoML: Efficient ML & DL at the Push of a Button
 - Learning Entire Algorithms: AI that Builds AI

2016 ERC Starting Grant AutoML2021 ERC Consolidator Grant Deep Learning 2.0

- Deep Learning Used to Have Many Problems for Tabular Datasets
 - Overfitting
 - Long training times
- Traditional ML Techniques Used to Dominate
 - Support Vector Machines
 - Decision Trees
 - Random Forests
 - Gradient Boosting (XGBoost)
 - Our Auto-sklearn

TabPFN: a Learned Algorithm For Small Tabular Data

- TabPFN is a new state-of-the-art algorithm for tabular data
 - It is encoded in the weights of a neural network
 - It makes the best predictions for small numerical tabular data in 1 second
- Current limitations

- Size: up to 1000 data points, 100 features, 10 classes
- Not (yet) designed for:
 categorical features,
 missing values,
 uninformative features
- High inference time

UNI FREIBURG

Deep Learning 2.0: expert-guided Auto-DL for the objectives at hand

- 1. Basics of ML
- 2. Basics of DL
- 3. Deep Learning 2.0
 - DL 2.0 projects possible without a DL expert
 - Strong open-source tools are already available
 - DL 2.0 yields state-of-the-art results for tabular data

all our code is open-source: github.com/automl

Frank Hutter Lars Kotthoff Joaquin Vanschoren Editors Automated Machine Learning

Methods, Systems, Challenges

OPEN

Springer Series on Challenges in Machine Lear

2 Springer

Thank you for your attention!

Funding sources

UNI FREIBURG

European Research Council

My fantastic team

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

I'm always looking for new great team members Please see automl.org -> jobs

Frank Hutter – DL 2.0: AI that Builds AI

Slides at: http://automl.org/talks

Illustration of Prior-Fitted Networks (PFNs) for Approximating GPs

Samples from the prior

10

10

Massive Progress in Speech Recognition in the Last Decade

