

From Predictions to Sustainability: Rethinking AutoML Priorities

Marius Lindauer

Green-AutoML Team* at LUH|AI:

Leona Hennig

Daphne Theodorakopoulos

Tanja Tornede

* and many more contributing to that vision

Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

The Need for AutoML!?

Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

Rise of Literacy



Photo by Anna Hunko on Unsplash

- Only priests were able to read and write
- People believed that they don't need to read and write
- They went to the holy buildings

- Today, everyone can read and write
- No one doubts the benefits of it
- ➡ Democratization of literacy

AutoML.org

Rise of AI Literacy?

Photo by Max Duzij on Unsplash

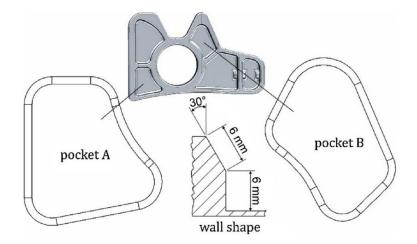
- Only highly educated people can program new Al applications
- Power only with the large IT companies

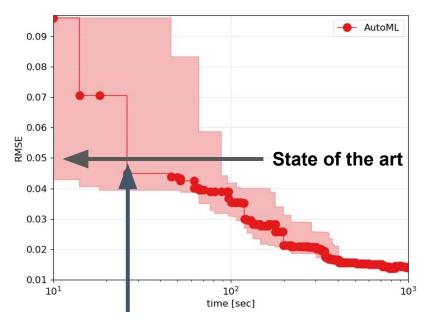
- In an age of limited resources, the need for efficient use gets more important
- AutoML contributes to Al literacy!

See also my TEDx Talk

Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

Shape Error Prediction in Milling Processes





Better than state of the art in less than 30sec!

Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

From ML Alchemy to Science

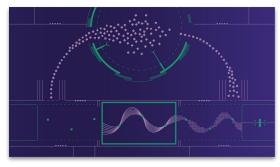
"You can teach an old dog new tricks" [Ruffinelli et al. 2019]

→ Hyperparameter tuning might not be the only required solution, but without it, it will also be hard.

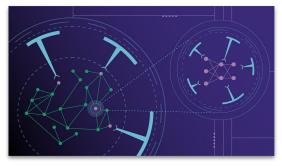
Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)



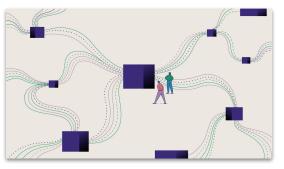
Tasks Automated by AutoML



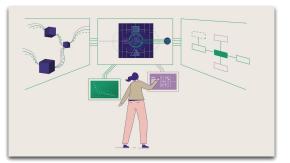
Hyperparameter Optimization



Neural Architecture Search



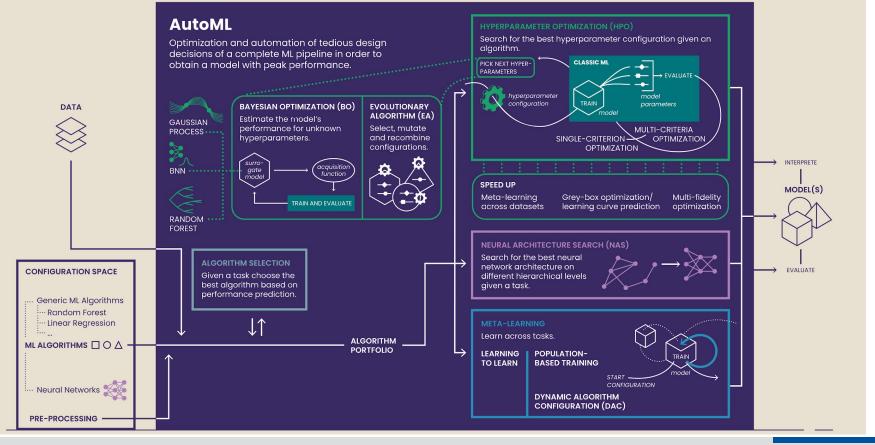
Meta Learning



Pipeline Design

Bildquelle: Lernplattform KI-Campus & AutoML.org, Lizenz: CC BY-SA 4.0

AutoML A-Z



Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

Advantages

AutoML enables

More efficient research and development of ML applications

- \rightarrow AutoML has been shown to outperform humans on subproblems
- More **systematic** research and development of ML applications
 - \rightarrow no (human) bias or unsystematic evaluation
 - More **reproducible** research
 - → since it is systematic!
- 50
 - Broader use of ML methods
 - → less required ML expert knowledge
 - \rightarrow better results with higher predictive performance
 - \rightarrow not only limited to computer scientists

Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

<u>Chevron-double-up Icons</u> by Laisa Islam Ani <u>Graph Icons</u> by Secret Studio <u>Chip Icons</u> by srip

Better predictive performance (e.g., accuracy)

 \Rightarrow other quality indicators (e.g., energy efficiency) are often ignored

Scaling to larger models (e.g., LLMs)

- \Rightarrow AutoML needs to be more efficient
 - (e.g., via multi-fidelity optimization or expert knowledge integration)
- ⇒ Mindset less on energy efficiency but to apply AutoML to ever larger models (each of training of them requires more and more energy)

Adaption to different hardware constraints

(e.g., embedded systems, smartphones)

- ⇒ Main objective: How can I get the best out of an AI on a given hardware module?
- \Rightarrow Rarely: How can I achieve the best with the fewest possible resources?

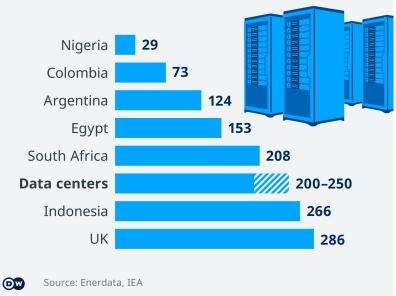
Energy Consumption of AutoML can be Huge

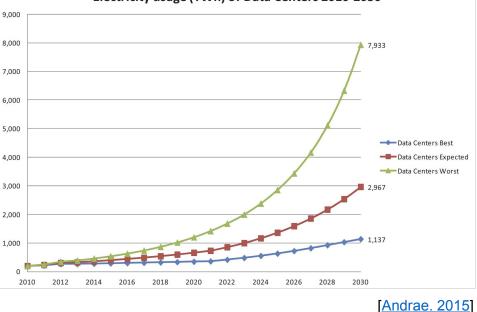
- Neural Architecture Search with Reinforcement Learning [Zoph et al. 2016]
 - 800 GPUs for 28 days
 - 250W TDP
 - 134.4 MWh
 - Yearly consumption of 30x 4-persons households
 - 483,840\$ on a commercial cluster
- Disclaimer: Neural architecture search is more efficient than orders of magnitude by now. [White et al. 2023]
- However... some AutoML methods are still super expensive:
 - For AutoML-Zero, <u>Real et al. (2020</u>) trained 10¹² deep neural networks

Energy Consumption of Data Centers

Data centers use more electricity than entire countries

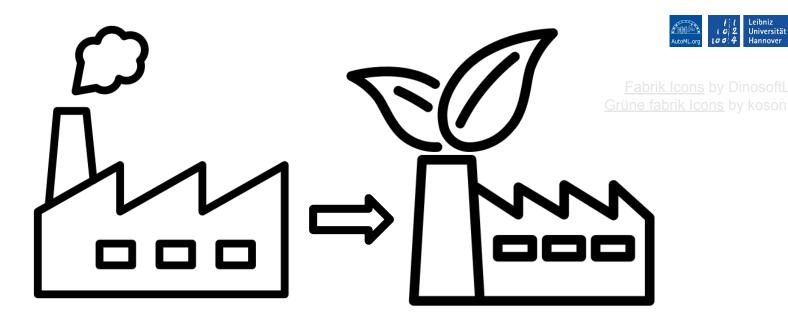
Domestic electricity consumption of selected countries vs. data centers in 2020 in TWh





Electricity usage (TWh) of Data Centers 2010-2030

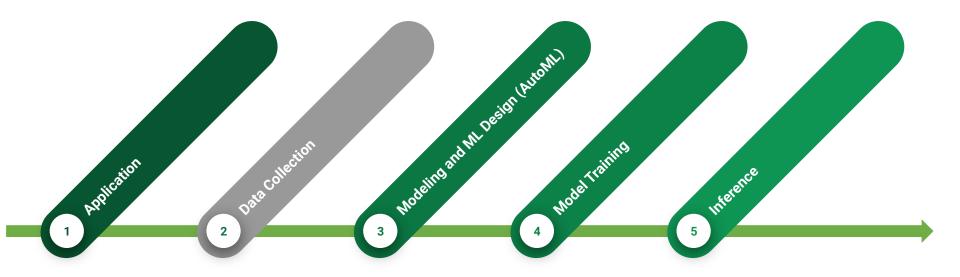
Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)



Green AutoML?

Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

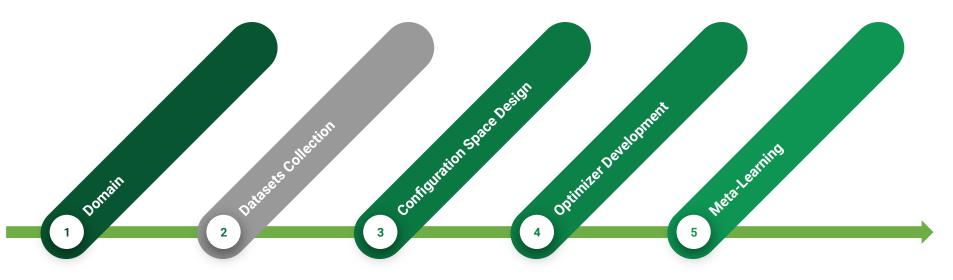
ML development



All of that requires compute power and consumes resources / produces CO_2e .

Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

AutoML development

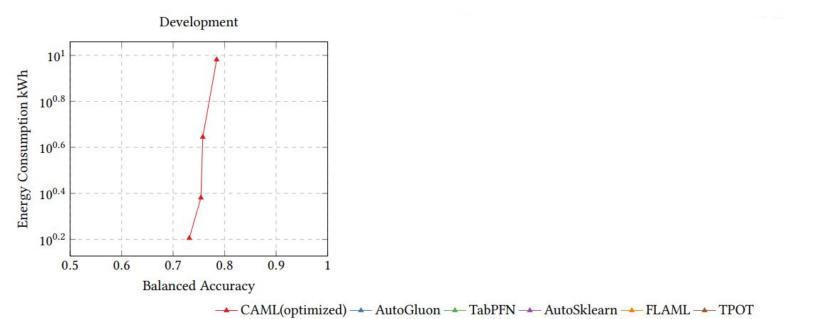


All of that requires compute power and consumes resources / produces CO₂e.

⇒ Diminishing effects since we develop AutoML for many applications and not only for one. Nevertheless, not negligible.

Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

Energy-Consumption of AutoML Tools [Neutatz et al. 2023 - WIP]



Meta-Learning AutoML Settings

- AutoML is sensitive to its own algorithmic meta-parameters
- Our prior work for making AutoML more efficient by meta-learning:
 - [Lindauer et al. 2018] studied the impact of the parameters of Bayesian Optimization for different HPO tasks (by using algorithm configuration)
 - [Feurer et al. 2022] meta-learned validation strategies and warmstartig portfolios for different datasets
 - [Neutatz et al. 2023] meta-learn the configuration space, validation strategy, ensembling and incremental training for different datasets and application-constraints
- Assumption: If we invest more time into the development of AutoML packages (incl. meta-learning), we save a lot of compute resources later on while using it

AutoML in Heavily Constrained Applications [Neutatz et al. 2023]

Default AutoML Configuration

Validation Strategy: Ensembling: Incremental Training: Validation split reshuffle:	Holdout 66/33 yes yes no		Validation St Ensembling: Incremental Validation sp
ML Hyperparameter space:			ML Hyperpar
SVM:	Yes		SVM:
SVM_tol:	Yes		SVM
SVM_C:	Yes		SVM
Extra Trees:	Yes		Extra Trees:
KNN:	Yes		KNN:
Multilayer Perceptron:	Yes		Multilayer Pe
Any Feature Preprocessor:	Yes		Any Feature
302 hyperparameters	Yes		302 hyperpar
	-	1	

Dynamic AutoML Configuration

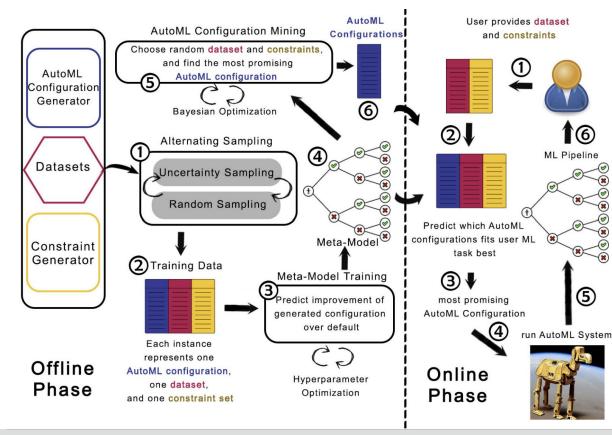
Validation Strategy: Ensembling: Incremental Training: Validation split reshuffle:	Holdout 46/54 no yes yes
ML Hyperparameter space:	
SVM:	Yes
SVM_tol:	Yes
SVM C:	No
Extra Trees:	Yes
KNN:	No
Multilayer Perceptron:	No
Any Feature Preprocessor:	No
302 hyperparameters	Yes/No

ML Pipeline

For SVM, the model parameters are the weights w: $\left[\frac{1}{n}\sum_{i=1}^{n} \max\left(0, 1 - y_i(\mathbf{w}^{T}\mathbf{x}_i - b)\right)\right] + \lambda \ \mathbf{w}\ ^2.$				
ML Hyperparameters:				
SVM:	Yes			
SVM_tol:	1e-5			
SVM_C:	1.0 (default)			
Extra Trees:	No			
KNN:	No			
Multilayer Perceptron:	No			
Any Feature Preprocessor:	y Feature Preprocessor: No			
302 hyperparameters				

Adapt AutoML parameters to ML task and deactivate undesired ML hyperparameters Searches for the optimal ML pipeline in the defined search space. A pipeline is defined by the selected ML hyperparameters.

AutoML in Heavily Constrained Applications [Neutatz et al. 2023]



AutoML.org 1004 Hannover

Leibniz

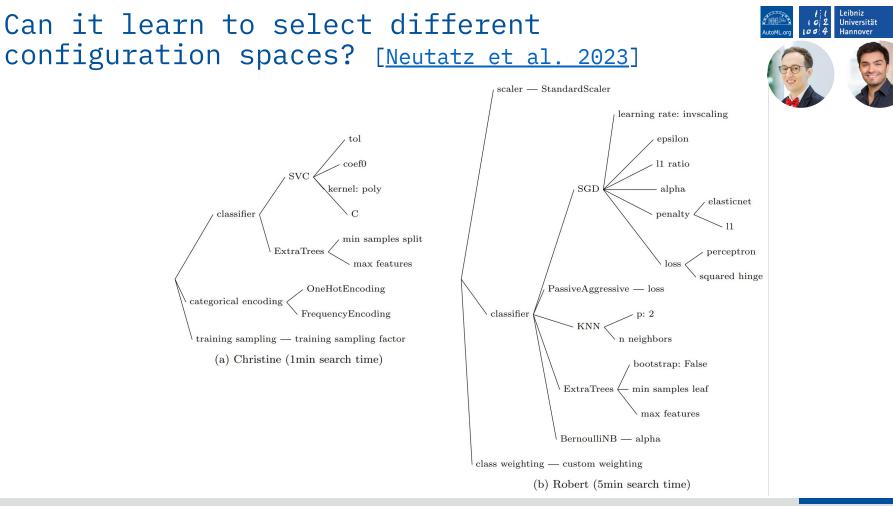
Universität

Possible application constraints:

- AutoML budget
- Inference time
- Memory consumption
- Energy consumption
- Fairness thresholds

• •••

Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)



Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

Take-Aways for Meta-Learning AutoML Conf.

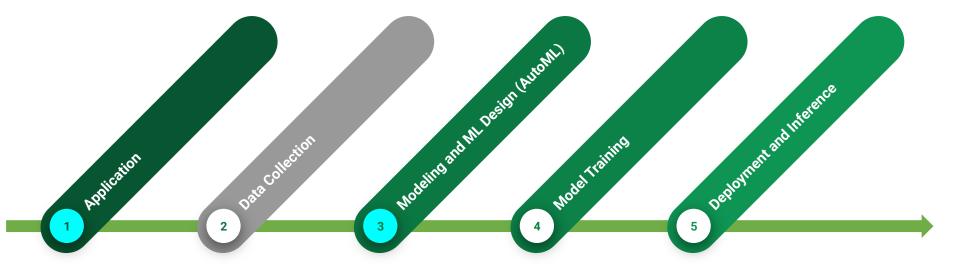
- Assumption: If we invest more time into the development of AutoML packages (incl. meta-learning), we save a lot of compute resources for using it
- Positive take-away:
 - Yes, we can meta-learn how to configure AutoML systems and achieve new state-of-the-art performance
- Negative take-away:

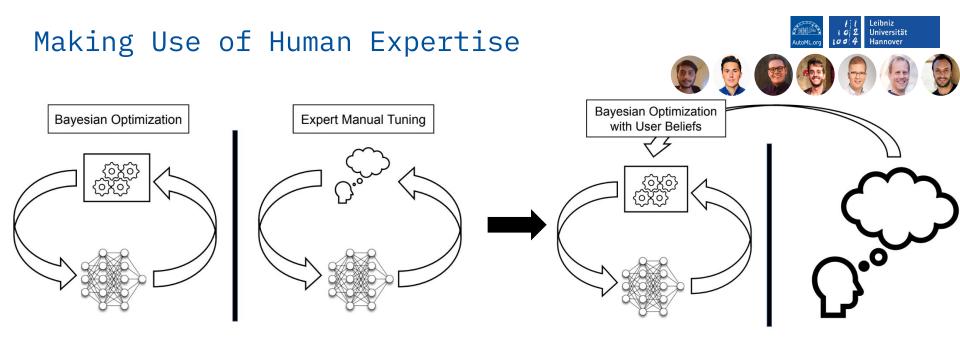
We cannot easily do it for large AutoML budgets (beyond 10min) without enormous compute resources

• **Future challenge**: How to configure AutoML on expensive tasks;

"Expensive" can mean:

- very expensive ML models (e.g., LLMs)
- very complex configuration spaces with thousands of ML trainings





• Bayesian approach based on Gaussian Processes [Souza et al. ECML 2020] $\mathcal{M}_q(x) = p(f(x) < 0$

$$< f_{\gamma} | oldsymbol{x}, \mathcal{D}_t) = \varPhi \left(rac{f_{\gamma} - \mu_{oldsymbol{x}}}{\sigma_{oldsymbol{x}}}
ight),$$

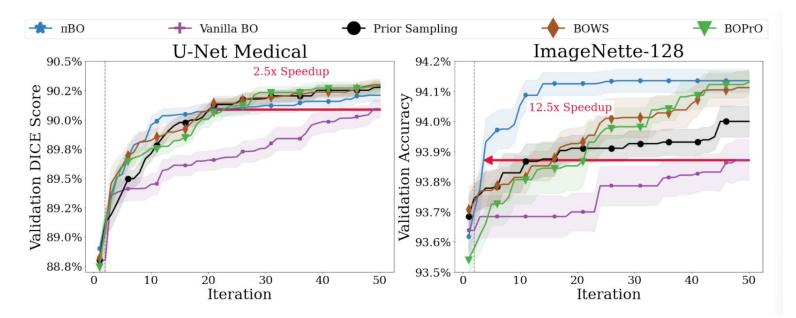
• Practical, model-agnostic approach [Hvarfner et al. ICLR'22]

$$oldsymbol{x}_n \in rg\max_{oldsymbol{x} \in \mathcal{X}} lpha(oldsymbol{x}, \mathcal{D}_n) \pi(oldsymbol{x})^{eta/n}$$

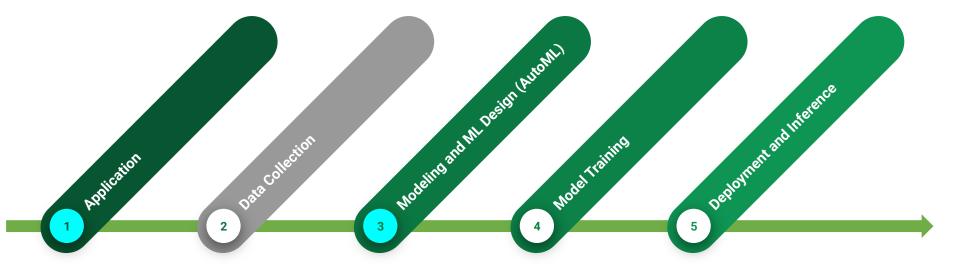
• Expert priors and efficient multi-fidelity optimization [Malik et al. MetaLearn'22, NeurIPS'23]

Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

PiBO [Hvarfner et al. ICLR'22]



- → Uses expert knowledge to speed up Bayesian Optimization
- → Robust also against wrong believes
- → Substantially speeds up AutoML



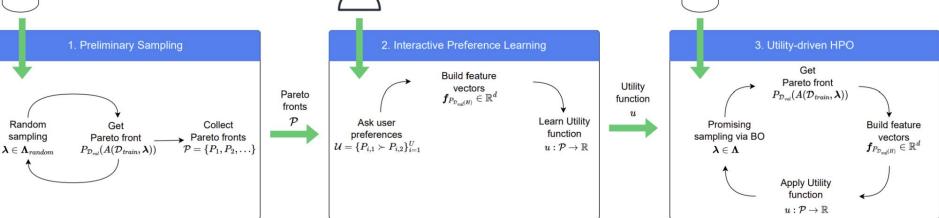
Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

 \mathcal{D}

slides available at www.automl.org

Universität

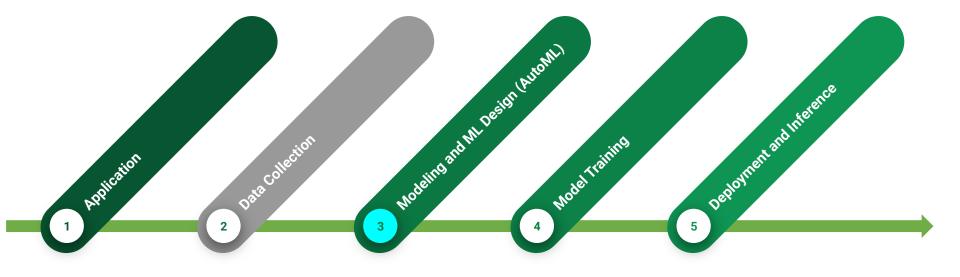
- Multi-objective (Auto)ML gets more and more important
 - e.g., hardware-aware NAS, fairness-aware AutoML or energy-efficient AutoML
- **Practical challenge:** Different multi-objective indicators lead to different approximated Pareto fronts and users cannot always mathematically describe their preferences \Rightarrow interactively learn Pareto front preferences



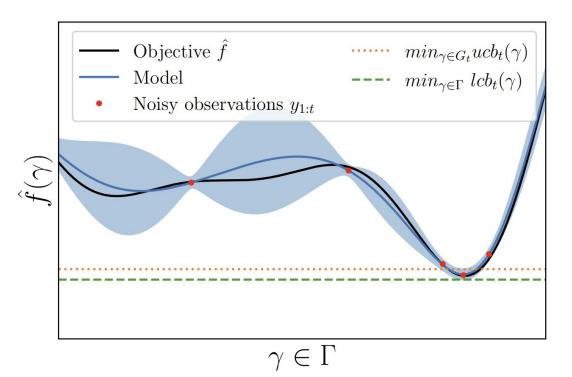
Evaluation of Preference-Learned Indicators [Giovanelli et al. 2023]

- Benchmark:
 - LCBench
 - Accuracy vs. Energy-Consumption
- Let's assume : User randomly chose a multi-objective (MO) indicator, but was actually hoping for the behavior of another MO indicator
- ⇒ learned preferences are better than randomly choosing a MO indicator

PB\IB	$HV\uparrow$	$SP\downarrow$	$ MS \uparrow$	$ $ $R2\downarrow$
$HV\uparrow$	$\begin{array}{ccc} 0.76 \\ (\pm 0.17) \end{array} \setminus \begin{array}{c} \textbf{0.77} \\ (\pm \textbf{0.17}) \end{array}$	$\begin{array}{c c} \textbf{0.76} \\ (\pm \textbf{0.17}) \end{array} \setminus \begin{array}{c} 0.52 \\ (\pm 0.24) \end{array}$	0.76 (±0.17) \ 0.52 (±0.21)	$\begin{array}{c c} 0.76 \\ (\pm 0.17) \end{array} \setminus \begin{array}{c} \textbf{0.77} \\ \textbf{(\pm 0.16)} \end{array}$
$SP\downarrow$	0.01 (±0.03 (±0.02) 0.03	$\begin{array}{c c} 0.01 & & 0.01 \\ (\pm 0.01) & & (\pm 0.0) \end{array}$	$\begin{array}{c c} \textbf{0.01} & 0.04 \\ (\pm \textbf{0.01}) & (\pm 0.03) \end{array}$	0.01 0.04 (±0.01) \ 0.04 (±0.02)
$MS\uparrow$	0.61 (±0.09) (±0.08) 0.19	0.61 (±0.19 (±0.12) 0.19	$\begin{array}{c c} 0.61 \\ (\pm 0.09) \end{array} \setminus \begin{array}{c} \textbf{0.65} \\ (\pm \textbf{0.06}) \end{array}$	0.61 (±0.09) \ 0.23 (±0.11)
$R2\downarrow$	$\begin{array}{ccc} 0.23 \\ (\pm 0.16) \end{array} \setminus \begin{array}{c} \textbf{0.22} \\ (\pm \textbf{0.16}) \end{array}$	$\begin{array}{c} \textbf{0.23} \\ (\pm \textbf{0.16}) \end{array} \setminus \begin{array}{c} 0.47 \\ (\pm 0.23) \end{array}$	$\begin{array}{c c} \textbf{0.23} & & 0.45 \\ (\pm \textbf{0.16}) & & (\pm 0.21) \end{array}$	$\begin{array}{c c} 0.23 \\ (\pm 0.16) \end{array} \setminus \begin{array}{c} 0.21 \\ (\pm 0.16) \end{array}$



Automatic Termination of Bayesian Optimization for Hyperparameter Optimization [Markarova et al. 2022]



 Motivation: Stop HPO if there is likely nothing to gain anymore

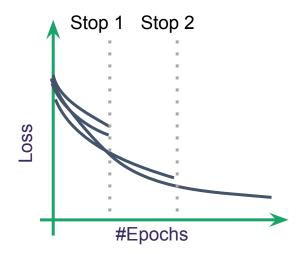
⇒ potentially saves a lot of compute resources and energy

• Termination of BO:

If the uncertainty on the incumbent loss is larger than BO's uncertainty, terminate HPO

⇒ Our extension: How to adapt to state-of-the-art multi-fidelity optimization?

Automatic Termination of Multi-fidelity HPO [Graf et al. 2023 - WIP]



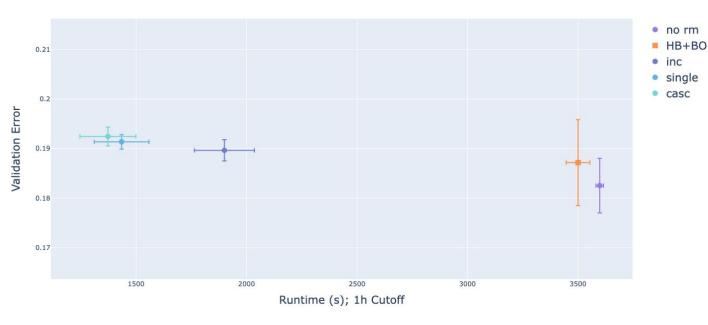
Several design options for automatic termination:

- 1. Terminate fidelities sequentially or independently?
- 2. Terminate overall if highest fidelity or all fidelities are terminated?
- 3. Terminate all lower fidelities if a higher fidelity was terminated?
- 4. Terminate a fidelity for all subsequent HB runs?
- 5. Adapt the search space for higher fidelities if lower fidelity was terminated?

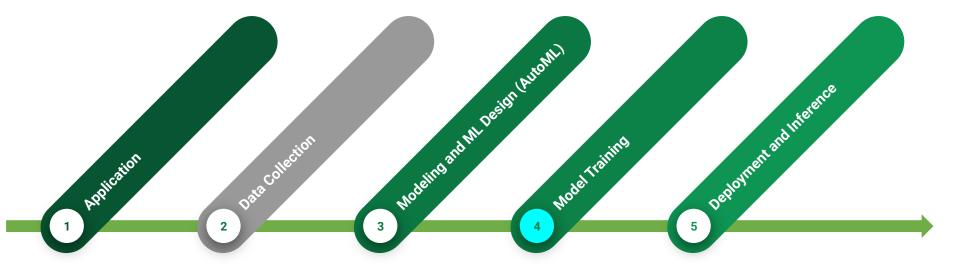
Jniversität

Preliminary Results [Graf et al. 2023 - WIP]

Random Forest on OpenML-CC18

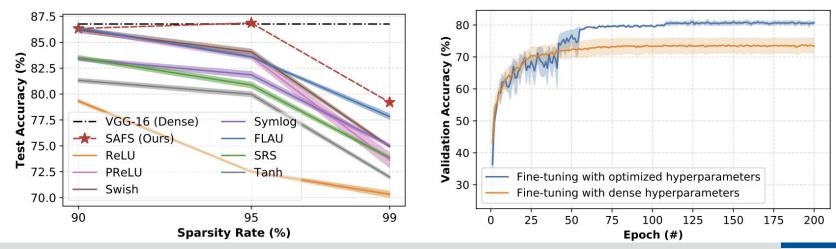


- HB+BO: BOHB [Falkner et al. 2018]
- no rm: fidelities are terminated once and not permanently
- inc: incremental termination of fidelities
- **single**: independent termination of fidelities
- **casc**: lower fidelities will also be removed



Learning Activation Functions for Sparse Neural Networks <u>[Loni et al. 2023]</u>

- Sparsifying networks can help to save a lot of compute power
- Insights:
 - Using the same activation function class as for the dense network is suboptimal for pruning
 - 2. Hyperparameters have to adapted accordingly



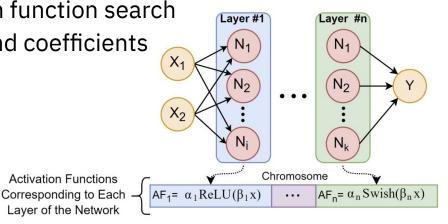
Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

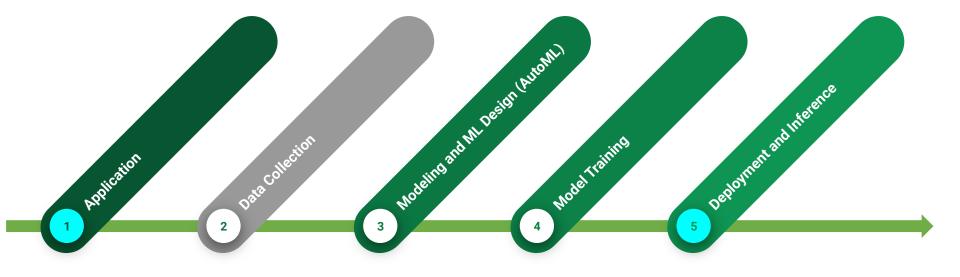
Learning Activation Functions for Sparse Neural Networks [Loni et al. 2023]

Take-Aways:

- Search for activation functions for the pruning process
- Activation functions should even differ for different layers
 - Symlog and Acon in early layers
 - Swish in middle layers
- Stage 1: Use EA (LAHC) for activation function search
- Stage 2: Apply SGD-based HPO to find coefficients

$$x \rightarrow \beta \rightarrow 0 perator \rightarrow \alpha \rightarrow y$$
(a)

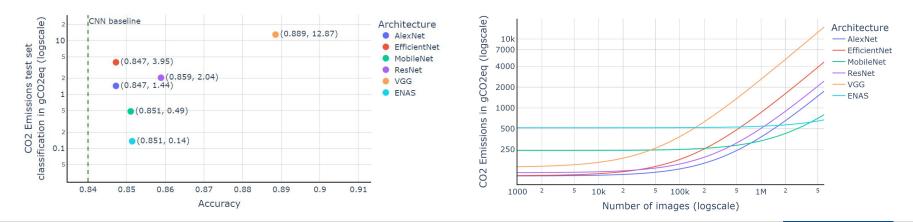




Green AutoML for Plastic Litter Detection [Theodorakopoulos et al. 2023]

Insights:

- 1. Architecture of DNNs with better accuracy
- 2. Architecture with lower CO₂ emissions
- 3. CO₂ emissions of AutoML training is compensated at inference



Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

Green AutoML [Tornede et al. 2023]

╋

Energy-efficient AutoML

Data compression, Zero-cost AutoML, multi-fidelity, intelligent stopping, ...

AutoML for Sustainability

Plastic Litter Detection, Green Assisted Driving, Predictive Maintenance, ...

Searching for Energy-Efficient Models

Model size constraint, Energy-aware objective functions, Energy efficient architectures, Model compression, ...

Create Attention

Tracking emissions, awareness among students, researchers, industry partners, ...

Challenges Beyond AutoML

- 1. How to measure the energy consumption of AI correctly?
- 2. How to translate energy consumption to CO_2e ?
- 3. How to account for the data collection?
- 4. How to estimate the long term use after model deployment?
- 5. How to assess the benefits of foundational research?

All resources are finite and we have to be act responsibly.

Find Us

AutoML.org

automl

 \square

Funded by:

European Research Council

@AutoML_org

@AutoML_org

Prof. Marius Lindauer: From Predictions to Sustainability (Munich'23)

DEG

Forschungsgemeinschaft

Deutsche

Federal Ministry of Education

and Research

Green AutoML [Tornede et al. 2023]

╋

Energy-efficient AutoML

Data compression, Zero-cost AutoML, multi-fidelity, intelligent stopping, ...

AutoML for Sustainability

Plastic Litter Detection, Green Assisted Driving, Predictive Maintenance, ...

Searching for Energy-Efficient Models

Model size constraint, Energy-aware objective functions, Energy efficient architectures, Model compression, ...

Create Attention

Tracking emissions, awareness among students, researchers, industry partners, ...

