

Automated Machine Learning: A Partical Introduction

KonKIS'24 - Conference of the German AI Service Centers

Rise of Literacy

Photo by Anna Hunko on Unsplash

- Only priests were able to read and write
- People believed that they don't need to read and write
- They went to the holy buildings

- Today, everyone can read and write
- No one doubts the benefits of it
- ⇒ Democratization of literacy

Rise of AI Literacy?

Photo by Max Duzij on Unsplash

- Only highly educated people can program new Al applications
- Power lies only with the large IT companies

- In an age of limited resources, the need for efficient use gets more important
- AutoML contributes to AI literacy!

Shape Error Prediction in Milling Process [Denkena et al. SSRN'20]

Better than state of the art in less than 30sec!

Why does ML development take a lot of time?

Design-Decisions? That's not how it works!

Prof. Marius Lindauer : KONKIS'24 - A Practical Introduction to AutoML

source:

https://scikit-learn

org/stable/tutorial/

machine learning

map/index.html

Hyperparameters are everywhere

SGD

CLASS torch.optim.SGD(params, lr=0.001, momentum=0, dampening=0, weight_decay=0, nesterov=False, *, maximize=False, foreach=None, differentiable=False, fused=None) [SOURCE]

Parameters

- params (iterable) iterable of parameters to optimize or dicts defining parameter groups
- Ir (float, optional) learning rate (default: 1e-3)
- momentum (float, optional) momentum factor (default: 0)
- weight_decay (float, optional) weight decay (L2 penalty) (default: 0)
- **dampening** (*float*, *optional*) dampening for momentum (default: 0)
- nesterov (bool, optional) enables Nesterov momentum (default: False)

Hyperparameters are everywhere

stable

Search docs

Installation Guide

Building From Source

Get Started with XGBoost

XGBoost Tutorials

Frequently Asked Questions

XGBoost User Forum

GPU Support

XGBoost Parameters

Prediction

Tree Methods

Python Package

Scikit-Learn API

Scikit-Learn Wrapper interface for XGBoost.

class xgboost.XGBRegressor(*, objective='reg:squarederror', **kwargs)

Bases: XGBModel , RegressorMixin

Implementation of the scikit-learn API for XGBoost regression. See Using the Scikit-Learn Estimator Interface for more information.

- Parameters:
 • n_estimators (Optional[int]) Number of gradient boosted trees.

 Equivalent to number of boosting rounds.
 - max_depth (Optional[int]) Maximum tree depth for base learners.
 - max_leaves (Optional[int]) Maximum number of leaves; 0 indicates no limit.
 - max_bin (Optional[int]) If using histogram-based algorithm, maximum number of bins per feature
 - grow_policy (Optional[str]) -

Tree growing policy.

- depthwise: Favors splitting at nodes closest to the node,
- lossguide: Favors splitting at nodes with highest loss change.
- learning_rate (Optional[float]) Boosting learning rate (xgb's "eta")

Simplest Example Ever: kNN

- k-nearest neighbors (kNN) is one of the simplest ML algorithms
- Size of neighbourhood (k)
 is very important for its
 performance
- The performance function depending on k is quite complex (not at all convex)
- BUT: We cannot get these curves in practice!

From ML Alchemy to Science

"You can teach an old dog new tricks" [<u>Ruffinelli et al. 2020</u>]

→ Hyperparameter optimization might not be the only required solution, but without it, it will also be hard.

ML vs AutoML

Topics of AutoML

- **model selection** (e.g., Neural Architecture Search, ensembling)
- **configuration/tuning** (e.g., hyperparameter optimization via evolutionary algorithms, Bayesian optimization)
- **AutoML methodologies** (e.g., reinforcement learning, meta-learning, in-context learning, warmstarting, portfolios, multi-objective optimization, constrained optimization)
- **pipeline automation** (e.g., automated data wrangling, feature engineering, pipeline synthesis, and configuration)
- **automated procedures for diverse data** (e.g., tabular, relational, multimodal, etc.)
- **ensuring quality of results in AutoML** (e.g., fairness, interpretability, trustworthiness, sustainability, robustness, reproducibility)
- supporting **analysis and insight** from automated systems

Advantages

AutoML enables

More efficient research and development of ML applications

 \rightarrow AutoML has been shown to outperform humans on subproblems

More systematic research and development of ML applications

 \rightarrow no (human) bias or unsystematic evaluation

```
More reproducible research
```

 \rightarrow since it is systematic!

Broader use of ML methods

- \rightarrow less required ML expert knowledge
- \rightarrow not only limited to computer scientists

Challenges

But, it is not that easy, because

- Each dataset potentially requires **different optimal ML-designs**
 - \rightarrow Design decisions have to be made for each dataset again
- Training of a single ML model can be quite expensive → We can not try many configurations
- ? Mathematical relation between design and performance is (often) unknown
 - \rightarrow Gradient-based optimization not easily possible

📰 🚹 Optimization in **highly complex spaces**

 \rightarrow including categorical, continuous and conditional dependencies

AutoML Packages

A brief History of AutoML Packages

Credits to Matthias Feurer for this list

- Use case: there exits a code base for DS/ML that needs further improvements
- Covers all kind of hyperparameter optimization use cases
- State-of-the-art techniques and performance
 - Bayesian Optimization
 - Multi-fidelity optimization
 - Multi-objective optimization
- Highly configurable and modular
- Parallelizable

Bayesian Optimization in a Nutshell

General approach:

- Fit a probabilistic model to predict the performance of unknown Hyperparametrer configurations
- 2. Trade-off exploration and exploitation for choosing the next configuration to be evaluated

Comments:

- very efficient in number of evaluations; <u>much more efficient than grid search</u> <u>and random search</u>
 - random search is competitive if you have thousands of CPUs/GPUs
- There are convergence results for Bayesian Optimization

DeepCAVE [Sass et al. 2022]

- **Interactive Dashboard** to analyze optimization runs/processes.
- **Exploration of multiple areas** like performance, hyperparameter and budget analysis.
- Modularized plugin structure with access to selected runs/groups to provide maximal flexibility.
- Asynchronous execution of expensive plugins and caching of their results.
- **API mode** gives you full access to the code

eral	Parallel Coordinates		۲	General
mary verview	SWC			Summary Q. Deerview
Configurations Configuration Pootprint	Objective	Budget @	~	Configurations
octive Analysis Dost Over Time Configuration Date	Show important Hyperparameters @ Wes		×	Objective Analysis b5 Cost Over Time © Configuration Cube
Parallel Coordinates	Linit Hyperparameters @ 6	Show Unsuccessful Configurations @	~	dt) Parallel Coordinates Budget Analysis 💣 Dudget Correlation
erpanarate Aculysis Importances Infiel Dependencies			wen 0.6 0.6 0.4 0.2 0.5	Hoperparameter Andysis ☆ Importances ← Partial Dependencies

	Partial Depende	encies		6
	nn,3			v
ons	Objective		Budget @	
	accuracy	~	Combined	×
lysis	Hyperparameter #1		Hyperparameter #2	
na Duba	learning_rate	v	Select hyperparameter	~
	Process			
ordinates				
	Show confidence (1)		Show KE curves @	
relation	Yes	¥	Yes	×
ter Analysis				
н				
endencies				
	ž			
	0.4		0.01	
	0.6 Le-4	le-3	0.00	

Fast and Accurate ML in 3 Lines of Code

Get Started

AutoGluon [Erickson et al. 2020]

- Use case: Push-Button to obtain a very good model
- Multi-level Stacking instead of Hyperparameter Optimization
 - under restricted time budgets, time is better invested in thoroughly evaluating good defaults settings
 - Inference time can be large
- Hand-defined list of hyperparameter configurations
- Default machine learning model at AWS

TabPFN [Hollmann et al. 2022]

- **Use case**: Training is a bottleneck and training data has a reasonable size
- Based on meta-learned transformers
 - offline training is done of synthetic datasets
- No training for new data required!
 - New training data are part of the context input
- No hyperparameter optimization needed
- Very efficient because of missing training
 - but can be limited in data complexity
 - inference time depends on training data (i.e. context) size

(a) Prior-fitting and inference

DAAD erc German Academic Exchange Service Deutsche L3S Forschungsgemeinschaft European Research Council

DFG

Prof. Marius Lindauer : KONKIS'24 - A Practical Introduction to AutoML

LUH|AI

in luh-ai

 \Box

LUH-AI

@luh-ai

Deutscher Akademischer Austauschdienst

Federal Ministry

of Education

and Research

Federal Ministry for Economic Affairs

and Energy

緣

Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection

AutoML.org

automl-org

@AutoML_org

automl

in

 \square

Funded by:

Appendix

automl / Auto-PyTorch Public

A Notifications

% Fork 266

Star 2.2k

<> Code 💿 Issues 50 11 Pull requests 20 🕟 Actions 🗄 Projects 3 🖽 Wiki 🕛 Security …

- 1. Automatic deep learning covering the entire DL pipeline
- 2. Joint hyperparameter and neural architecture search
- Auto-PyTorch Tabular # initialise Auto-PyTorch api [Zimmer et al. IEEE TPAMI'21] api = TabularClassificationTask()
- → State-of-the-art on tabular data with regularization cocktails [Kadra et al. NeurIPS'21]
- → Auto-PyTorch for Time Series Forecasting [Deng et al. ECML'22]

```
# Search for an ensemble of machine learning algorithms
api.search(
    X_train=X_train,
    y_train=y_train,
    X_test=X_test,
    y_test=y_test,
    optimize_metric='accuracy',
    total_walltime_limit=300,
    func_eval_time_limit_secs=50
)
```

```
# Calculate test accuracy
y_pred = api.predict(X_test)
```


Takes care of finding well-performing ML-pipeline

Easy-to-use

import autosklearn.classification as cls
automl = cls.AutoSklearnClassifier()
automl.fit(X_train, y_train)
y_hat = automl.predict(X_test)